Расход пгс на 1 м3 основания

Бетон из песчано-гравийной смеси (ПГС)

Чтобы сделать прочный фундамент, важно соблюсти пропорции ПГС для бетона. Не нужно быть семи пядей во лбу, чтобы высчитать их количество и приготовить правильную смесь. Для этого существуют проверенные временем формулы и методы. Предлагаем вместе разобрать состав бетона, его характеристики и способы приготовления строительного раствора.

Виды песчано-гравийной смеси

Сегодня бетон так популярен для строительства, что ему можно посвятить отдельную статью. Основа прочности строительного состава – это песчано-гравийная смесь (ПГС). Как видно из названия, основные компоненты — это гравий и песок.

Всем известно, как выглядит ПГС. Горы смеси из песчаных частиц и камней разных размеров можно увидеть вдоль дорог при их отсыпке. Но давайте взглянем в ГОСТ и найдем характеристику терминов, которые помогут нам точно определить, что такое песок и что такое гравий:

  • Песком называют частицы, которые имеют размер от 0,05 до 5 мм. Эти обломки горных пород могут иметь округлые и острые края.
  • К гравию относят более крупные минеральные фрагменты. Их размер может быть от 5 до 70 мм. Поверхность камней бывает окатанной в разной степени.

Гравийная смесь образуется в природе естественным путем. Ее даже относят к нерудным полезным ископаемым. Возможно, кто-то видел, как добывают ПГС на реках и в карьерах. Считается, что самый качественный материал намывают со дна морей.

По месту происхождения песчано-гравийных смесей, им дают соответствующие названия. Посмотрим на характеристику основных типов:

Происхождение ПГС Описание
Горная порода
  • ПГС этого типа добывают сухим способом в горных карьерах;
  • гравий образуется при естественном разрушении горных пород;
  • минеральные осколки имеют неоднородный состав и размер;
  • камни отличаются острыми краями;
  • смесь может содержать большое количество глины.
Морской галечник
  • ПГС добывают со дна моря с плавучих платформ гидромеханическим способом;
  • морская галька образуется путем окатывания водой осколков и обломков горных пород;
  • камни имеют округлые края;
  • размер зерен однородный.
  • смесь содержится малый процент дополнительных включений;
Озерный или речной гравий
  • ПГС добывают экскаваторами с берегов или пересохших русел рек и озер. Или используют гидромеханические устройства для поднятия гравия со дна.
  • камни разного размера могут иметь острые или гладкие края.
  • в смеси часто встречается глина, ракушечник.

Если посмотрите на натуральную смесь из песка и гальки с пляжа, увидите, что большую часть занимает песок (примерно 80%), а так же камни разных размеров (до 20 % от общего количества). Диаметры гальки могут иметь разницу в 300 мм, что недопустимо для многих строительных работ.

Чтобы бетон получился качественный, надо чтобы количество твердых элементов в песке имело значение 65-75%. Это самое оптимальное соотношение. Такая смесь называется обогащенной (сокращенно ОПГС). В искусственно созданных ПГС гранулы имеют небольшой разбег по диаметру. Например, можно приготовить составы с размерами гравия от 5 до 25 мм или от 10 до 50 мм.

Чтобы сделать зерна ПГС одинакового размера, используют специальные дробильные установки. А сортировочные машины разделяют гравий по размерам. Полученный гравий затем смешивают с песком.

Глядя на следующую фотографию, можно оценить различия природного материала и каменистого, прошедшего обогащение.

На практике, смесь песка со щебнем делят на 5 групп. С возрастанием порядкового номера, увеличивается процент содержания гравия. Эта цифра может составлять 15, 25, 35, 50, 65 и 75%. Чем выше показатель, тем лучше качество ОПГС. Самые прочные бетоны М200 и М150, которые соответствуют ГОСТу, готовят из обогащенной смеси №5.

Для информации: стандарты документа ГОСТ 23735–2014 «Смеси песчано-гравийные для строительных работ» определяют состав стройматериалов. ГОСТ содержит раздел с описанием допустимого размера частиц. Вот их характеристика:

Есть еще ряд стандартов, которые используют промышленные компании для производства бетона. Они определяют требования к уровням прочности, морозоустойчивости, количеству допустимых примесей в бетонных растворах.

Применение

Как мы уже выяснили, есть разные ПГС. Они имеют разный состав, происхождение и применение. Природные материалы подходят для использования в следующих случаях:

  • Отсыпка дорожного полотна, которое будет иметь не большие нагрузки.
  • Создание дренажных насыпей.
  • Обустройство детских, спортивных площадок.
  • Отсыпка фундаментов, трубопроводов, траншей.
  • Изготовление дорожек на дачных участках.
  • Устройство площадки перед гаражом.

Преимущества природного ПГС заключается в том, что он является для нас естественным компонентом окружающей среды. Он встречается повсеместно, поэтому служит для нас экологически безопасным материалом.

Обогащенные составы имеют более серьезное применение. Их используют:

  • В строительстве магистралей, федеральных трасс.
  • Для отсыпки фундаментов сооружений промышленного назначения, которые должны отвечать повышенным требованиям прочности.
  • В приготовлении марочного бетона.

По сравнению с природным аналогом, обогащенный состав имеет лучшие технические характеристики, поэтому стоит дороже. Частицы разных диаметров заполняют пустоты, что делает материал более прочным.

Пропорции ПГС и цемента для бетона

Качество цементно-песчаной смеси с щебнем напрямую зависит от компонентов. При этом важно их соотношение, а так же качество. Есть строительные формулы, которые принимаются как аксиомы. Они выведены опытным путем и подтвердили свою эффективность на практике.

В такой универсальной формуле приводятся следующие пропорции:

  • ОПГС – 4 ч.;
  • цемент – 1 ч.;
  • затворитель – 0,4 ч.

Затворитель – это строительный термин, который обозначает жидкость для разбавления сухих компонентов для придания им эластичности. Чаще, в качестве затворителя используют воду.

Чтобы правильно отмерить ингредиенты, рекомендуем вам выбрать одинаковую единицу измерения. Например, считать все в килограммах или литрах.

Для удобства расчетов, строители свели показатели в таблицу. В ней мы можем увидеть расход цемента, пгс или щебня для получения раствора определенной марки.

Например, посмотрим, что нам потребуется для замешивания марочного раствора М400:

  1. Выбираем пересечение соответствующей строки со столбцами. Получаем, что на килограмм портландцемента М400 нужно взять 3,9 кг ПГС.
  2. Следующая колонка показывает расход песчано-гравийной смеси на 10 л портландцемента.
  3. Далее видим, что из 10 л цементного порошка и требуемого количества ПГС получится 31 л бетона.

Для целей «домашнего» приготовления строительных смесей универсальной единицей меры является ведро. Подойдет любое: пластиковое, металлическое, эмалированное, цветное. Главное, чтобы оно было 10-литровым.

Поучимся вычислять в ведрах. Одновременно выясним, какое количество составляющих потребуется для замешивания 1 куба бетона.

Уравнение подсчета количества цемента выглядит так: 1000*10:31=323 л или 32,2 ведра, а ПГС вычислим по такой формуле: 1000*35:31=1129 л или 112,9 ведер.

Все цифры берем из той строчки, какую марку хотим приготовить. В примере мы посчитали сухие компоненты для марки М400.

Если вам сложно сориентироваться по табличным цифрам, можно использовать строительный онлайн калькулятор для расчета количества нужных материалов.

Вода рассчитывается в каждой ситуации индивидуально. Песок в смеси может быть сухой или влажный, а камни — обладать разной пористостью. Вместе эти характеристики влияют на итоговый расход затворителя.

Как лучше поступить, чтобы не прогадать с объемом воды? Просто при замешивании не добавляйте сразу всю жидкость. Сначала лучше налить 2/3 от предполагаемого объема, а потом вливать ее частями до достижения нужной консистенции раствора. Так, опытным путем, вы определите оптимальный расход затворителя.

Рассмотренная нами таблица содержит объемы исходных материалов для разных марок бетона. Чтобы определить, какая марка лучше, посмотрите, где применяются другие виды:

  • М150 – для отмостки небольших построек, одноэтажных домов.
  • М200 – при залитии оснований в виде лент или плит.
  • М250 – для плотных монолитных плит.
  • М300 – для строительства монолитного фундамента.
  • М400 – в изготовлении сверх прочных бетонных конструкций.

Как видите, совсем не обязательно готовить сверхпрочный состав, если нужно построить дачный дом или залить площадку для машины.

Бетон из ПГС для фундамента

При изготовлении фундаментов не используют гравий горно-овражного происхождения. Потому что «на осколках старого трудно построить новое». Эта шутка-ассоциация не даст вам забыть, что этот тип ПГС не подходит для строительства фундамента. На самом деле горную щебенку не берут потому, что он имеет неоднородную структуру гранул и содержит глину. Это отрицательно сказывается на прочности бетона.

Читать еще:  Тротуарный камень своими руками

Самые подходящие ПГС – это морские и речные. Их гранулы примерно одинакового размера и структуры. Также они подходят под ГОСТ.

Чтобы залить фундамент для большого здания нет смысла готовить раствор самостоятельно. Утомительный поиск подходящих элементов может занять много времени и не позволит сэкономить. А опытные производители бетона уже знают в нем толк и сделают его по лучшему рецепту.

Смешать бетон своими руками можно, если его объем относительно невелик. Хорошо, если есть строительная бетоньерка и помощники.

Пропорции для фундамента отличаются от универсальной формулы бетона. Обратите внимание на их соотношение:

  • 8 порций ОПГС;
  • 1 порция цемента;
  • вода – половина от порции цементного порошка.

Для приготовления бетона для фундамента нужно использовать ПГС №5 и портландцемент. К затворителю тоже предъявляются строгие требования. Вода должна быть прозрачная, без посторонних химических и органических примесей. Проверьте ее на внешний вид, оцените прозрачность и запах. Не стоит использовать воду, если она мутная или пахнет химией. Это может привести к тому, что бетон не схватится или станет не достаточно прочным.

При замешивании раствора зимой используют теплую воду (+40 градусов Цельсия), а летом наоборот холодную.

Обратите внимание, что привычные для нас названия цементных порошков имеют также новую аббревиатуру. Чтобы не запутаться при выборе в строительном магазине, запишите новые наименования. Так цемент М400 может выглядеть как ЦЕМ I 32,5Н ПЦ, а марка М500 — ЦЕМ I 42,5Н ПЦ.

Пропорции в ведрах

Вернемся к нашим ведрам. Посмотрим, как с помощью 10-литрового ведра и знания удельной плотности стройматериалов мы выведем формулу бетона хорошего качества.

Удельный вес показывает, какое количество вещества в кг посещается в кубометровой емкости.

Для расчета будем использовать алгоритм с формулами. Звучит скучно. Но так как мы считаем в ведрах, то и формулы будут такими же простыми.

  • Сначала узнаем, сколько нам нужно цемента М400. Его удельная плотность равна 1300 кг на 1 кубометр. Переведем объем ведра в м3. Получаем 0,01 м3. Перемножаем показатели (1300 кг/м3*0,01 м3 = 13 кг) и видим, что в ведро поместиться 13 кг цемента.
  • Теперь считаем ПГС. Вспомним, что по нашей пропорции, соотношение цемента и ПГС для бетона составляет 1 к 8. Значит, нам потребуется 13*8=104 кг ПГС. Удельную плотность 1650 кг/м3 умножаем на ведро (1650*0,01=16,5 кг). Получаем, что в 1 ведре помещается 16,5 кг ПГС. Поделим общую массу на количество пгс в 1 ведре (104 кг/16,5) и получим 6,3 ведра.
  • Затворителя нужно взять половину от количества цемента. Значит, его потребуется 0,5 ведра.

Сколько ПГС надо на 1 куб бетона

Продолжим вычисления. Из соотношения количества ингредиентов в «ведрах», выведем значения ПГС в литрах и килограммах. Это позволит нам узнать, сколько нужно ОПГС на 1 куб бетона.

  1. Вычислим, сколько всего литров занимает 1 порция. Переведем полученные ранее значения компонентов смеси в литры, а затем сложим их. 10 (цемент)+63(гравий)+5(затворитель)=78 л.
  2. Узнаем, сколько порций поместиться в кубометре: 1000 м3:78 л = 12,82.
  3. Рассчитаем объем песчано-гравийной смеси в литрах на 1 куб: 63*12,82=807,66.
  4. Переведем литры в кг. Для этого умножим удельную плотность на объем. 1650*0,80766 = 1332,63 кг.

В результате расчетов мы выяснили, что расход пгс на 1 м3 бетона составит 807,66 л (1332,63 кг).

Как замесить бетон

Отвлечемся от теории и перейдем к практике. Есть 2 способа замешивания раствора: механический и ручной. При ручном способе разбавления пгс с цементом используют емкости и лопаты. Для механического способа потребуется тоже самое, плюс бетономешалка.

За 1 подход в бетономешалке можно приготовить количество смеси равное 2/3 от объема емкости. Если барабан имеет объем 160 л, то за раз можно сделать около 120 л бетона из гравмассы. За рабочую смену можно изготовить около 3 м3 состава.

Приступим к замесу механизированным способом:

  1. Сначала включим центрифугу без заполнения.
  2. Поворачиваем барабан кверху в положение 1 и добавляем воду (5 л или полведра).
  3. Закладываем обогащенную ПГС (6 ведер).
  4. Поворачиваем смеситель в положение 2 и добавляем цемент (1 ведро).
  5. Мешать нужно не больше 10 минут, иначе цемент начнет схватываться. Полученная смесь должна быть однородного цвета и консистенции. Не допускается наличие комков.

Бетонный раствор всегда готовьте непосредственно перед началом его заливки. Все количество нужно израсходовать в течение 2 часов после приготовления.

Для изготовления небольших объемов можно обойтись ручным способом. Посмотрите, как меняется последовательность засыпки ингредиентов:

  1. Сначала насыпаем в строительную ванну сухие вещества (песок, гравий, цемент). Перемешивайте их до однородного состояния, чтобы вам на глаза не попадались не промешанные комки.
  2. Начинаем порционно вливать воду. Не забывайте, что при этом нужно постоянно перемешивать компоненты.

Замешивая сухие составляющие, не нужно сильно разводить их водой. При высыхании жидкий раствор даст усадку, и поверхность фундамента может растрескаться.

Практические рекомендации

Мы специально привели для вас все возможные варианты расчетов для создания идеальной бетонной смеси. Теперь вы как специалист бетонного производства можете давать советы неопытным мастерам. Но напоследок мы припасли супер лайфхак, который позволит вам приготовить бетон без сложных формул и таблиц.

Приготовьте листок с ручкой, банку (1 л), ведро (10 л), цемент, ПГС, воду. Приступим:

  1. Сначала измерим, сколько воды помещается в 10-литровое воды. Логично, что 10. Запишем на бумаге.
  2. Теперь засыплем полное ведро щебня и нальем воду до верха. Не забудьте посчитать количество банок, которое поместилось в ведро. Пусть это будет 4 литра. Запишем цифру на листке и освободим емкость.
  3. Насыпаем песок в количестве, которое равно объему воды из п. 2. Это снова 4 литра. Наливаем воду до верха цемента. Это количество будет показывать мерку цемента, который будет заполнять самые мелкие пустоты. Например, получилось 2 банки. Запишем в заметках.
  4. Выводим формулу. Для замешивания правильного раствора потребуется: 10 ч. ПГС, 4 ч. воды и 2 ч. цемента.

И в завершении приведем небольшую памятку с советами по работе с бетоном:

  • Перед покупкой всегда проверяйте срок годности цемента. Применяйте только качественный свежий цемент известных производителей.
  • Для создания бетона фундамента приобретайте готовый обогащенный материал. Самостоятельное обогащение природного пгс не поможет сэкономить средства, но потребует дополнительных физических усилий.
  • При подготовке каждого компонента, убедитесь в их пригодности (отсутствие окаменелостей в цементном порошке, чистота и прозрачность воды, отсутствие в песке ила, глины).
  • Вода должна быть без грязи, запаха и химических добавок.
  • Добавки для гидроизоляции и пластификаторы добавляйте, строго следуя инструкции.

Коэффициент уплотнения ПГС

Сыпучие строительные смеси применяются при возведении сооружений. В процессе транспортировки, разгрузки и хранения отсыпанный материал уплотняется. Для расчета расхода принимают коэффициент уплотнения ПГС.

Технические виды строительных смесей

ПГС — смесь из песка и гравия. Используется для строительных работ. Состав смеси регламентируется ГОСТом 23735-2014.

ЩПС — смесь из щебня, гравия, песка естественной добычи. Производится по ГОСТу 25607-2009.

ЩПС из дробленых бетонов — изготавливаются по техническому регламенту ГОСТа 32495-2013.

В оценке качества смесей учитывают:

  • общие показатели составного материала;
  • свойства песка;
  • свойства щебня, гравия.

Сыпучие материалы проверяют по плотности, прочности, содержанию пыли и сора, включениям опасных веществ.

Происхождение и пути добычи строительных смесей

Песчано-гравийные смеси добывают из гравийно-песчаных, валуйно-гравийно-песчаных пород.

В состав ПГС входят:

  • песок крупностью 0,05–5 мм;
  • гравий 5–70 мм;
  • валуны свыше 70 мм.

Наличие гравия колеблется от 10-90% от общей массы.

Производят два вида песчано-гравийной смеси:

  • природная смесь, добываемая и поставляемая без переработки;
  • обогащенная смесь добывается природным путем, обогащается добавкой или извлечением песчано-гравийной составляющей.

Добычу ПГС производят из оврагов, озер и морей. Морской материал самый чистый. В остальных могут быть примеси из глины, известняка, сора.

В состав ЩПС естественного происхождения входит щебень основной (40–80 мм, 80–120 мм) и расклинивающей фракции (5–20 мм, 5–40 мм).

Читать еще:  Диагональ телефона 6 53 сколько в сантиметрах

Дробимость щебня из осадочных пород, а также щебня из изверженных пород имеет марку 400 и 600 соответственно.

ЩПС из дробленого бетона, железобетона включает:

  • неорганическую щебеночную дробь крупностью от 5 мм;
  • неорганический песок, получаемый из дробимого бетонного щебня.

Материалы являются дробимыми остатками при разрушении бетонных или железобетонных строительных конструкций.

Область применения

ПГС применяют при возведении оснований под автомобильные дороги, подушек фундаментов, обратной засыпке котлованов и отсыпке насыпей.

В строительстве железных дорог применяют балластные смеси по ГОСТу 7394-85, состоящие из песка и гравия либо только из гравия.

ЩПС естественных пород применяют в дорожном строительстве.

ЩПС из дробленых строительных материалов используются в производстве бетонов, а также в подсыпках и основаниях при возведении зданий.

Порядок производства работ

Сыпучие материалы во время строительства укладываются на величину, равную произведению размера самых крупных частиц, умноженному на 1,5. Один слой укладки должен быть не менее 10 см.

Песок должен увлажняться в случае отсыпки основания насухо.

Расход воды зависит от температурных условий.

Методы уплотнения грунта при устройстве оснований из ПГС:

  • уплотнение поверхностного слоя тяжелыми трамбовками;
  • применение вибрационных машин;
  • использование трамбовок;
  • глубинное гидровиброуплотнение.

Контроль плотности при трамбовке производят на величину 1/3 уплотняемого слоя, на толщину не менее 8 см.

Коэффициенты уплотнения

Средний коэффициент естественного уплотнения сыпучих смесей имеет значение 1,2, т. е. объем уплотненной смеси уменьшится в 1,2 раза.

По ГОСТу максимальный коэффициент уплотнения отсева при транспортировке равен 1,1.

Коэффициенты уплотнения при строительных работах приведены в СНиП «Земляные сооружения, основания и фундаменты» таблица 6. Песок имеет k=0,92÷0,98.

При дорожном строительстве, коэффициенты к материалам применяются согласно СНиП «Автомобильные дороги». Для ПГС оптимального состава с маркой щебня 800 коэффициент запаса уплотнения принимается 1,25–1,3. При марке щебня 600÷300 — коэффициент запаса будет 1,1–1,5. Коэффициент запаса шлака принимается 1,3–1,5.

Объемы материалов в смете закладывают с учетом приведенных коэффициентов.

Приборы для измерения плотности грунта

При послойной укладке грунта, контролируется плотность каждого уровня. С помощью плотномера или пенетрометра можно проверить трамбовку песка на стройке.

Плотномер электромагнитный — электронный прибор, измеряющий плотность посредством электромагнитного излучения. Он способен выдать характеристики гранулометрии, влажности, определить пределы пластичности и текучести.

Динамический электронный плотномер грунта работает под динамической нагрузкой от удара равным 5 кг. Прибор определяет модуль упругости, нагрузки, деформации.

Пенетрометр — механический прибор, определяет плотность на основании прилагаемого давления. Результат измерений отображается на шкале прибора.

Сметный учет

Объем материалов на строительство вносят в сметный калькулятор с учетом уплотнения. Применяется коэффициент относительного уплотнения и разрыхления (коэффициент расхода).

Расход песка с требуемым коэффициентом уплотнения при обратной засыпке от 0,9 до 1,0, рассчитывается с учетом относительного коэффициента уплотнения от 1,0 до 1,1 соответственно, для шлаков 1,13–1,47.

Коэффициент относительного уплотнения для горных пород при плотности 1,9 – 2,2 г/см куб, равен 0,85–0,95.

Хранение сыпучих материалов

Щебень, песок, щебеночно-песчаные смеси хранят раздельно друг от друга. Применяют меры по защите складируемых материалов от засорения. Оптимальный вариант — хранение на закрытом складе. Там материалы защищены от ветра и осадков.

При длительном складировании происходит уплотнение песка при хранении, также щебня и ПГС.

Норма естественной убыли материалов регламентируется стандартом РДС 82-2003.

Нормы убыли при хранении навалом измеряются процентами от массы:

  • щебень, гравий — 0,4%;
  • песок — 0,7%;
  • ПГС — 0,45%;
  • отсев — 0,75%.

При отгрузке материалов учитываются данные показатели.

Песчано-гравийная смесь востребованный материал. Он используется в промышленном, дорожном, дачном строительстве. Информация из статьи поможет правильно рассчитать потребность в данном сырье.

Коэффициент уплотнения песка, щебня, грунта и ПГС — таблица и правила расчета

Сыпучие строительные материалы, а также грунты при различных физических воздействиях могут разрыхляться или уплотняться. При этом плотность их колеблется в достаточно большом интервале — до нескольких десятков процентов. В строительстве часто применяются 2 относительные величины — коэффициент уплотнения при транспортировке Кут и коэффициент уплотнения грунта (основания) Ку. По сути они отражают одно и то же явление — изменение объема вследствие уменьшения пористости, но рассчитываются и применяются по-разному.

Характеристики плотности строительных материалов

Если в карьере горные породы находятся в плотном монолитном состоянии, то при добыче они разрыхляются, становятся более пористыми. Сырье проходит множество манипуляций — выемку, промывку, просеивание с распределением на фракции, хранение. При отгрузке материалы опять рыхлятся, а при перевозке трамбуются. На завершающей стадии они укладываются в конструкцию и еще раз уплотняются. На протяжении всего процесса изменяется влажность, что неизбежно отражается на плотности.

Сыпучие материалы — щебень, песок, песчано-гравийная смесь ПГС и т.д. — состоят из отдельных зерен, между которыми есть пустоты. При разработке, погрузке и выгрузке твердый скелет разрыхляется, объем пор и пустот увеличивается.

Рыхлонасыпанное состояние материала характеризуется насыпной плотностью, то есть соотношением массы и объема, ей занимаемого:

Измеряется она путем взвешивания стандартного мерного сосуда объемом 5-50 дм³ без предварительного уплотнения. Размер тары выбирается исходя из наибольшей крупности частиц. В процессе испытаний сразу можно найти пустотность как отношение объема пустот ко всему объему материала. Она определяется в %. Так, насыпная плотность песка составляет 1600 кг/м³, щебня 1310-1400 кг/м³, ПГС — 1340-1500 кг/м³ (в зависимости от размера фракций). В рыхлом состоянии между частицами сохраняется некоторый объем воздуха. Пустотность песка, щебня и ПГС соответственно 30-45%, 20-50% и 30-50%.

Если убрать все поры из материала, то получится сплошной монолит. Его плотность называется истинной. Она намного больше насыпной: у песка это 2500-3000 кг/м³, щебня — 2700-3100 кг/м³, ПГС 2500-3100 кг/м³. Это величина неизменная, она необходима для вычисления пористости материала.

Истинная плотность определяется опытным путем. Сырье измельчается в порошок, затем находится его масса и объем (по объему вытесненной из сосуда воды). По формуле ρ=m/V рассчитывается удельный вес материала без пор и пустот.

Для чего используется коэффициент уплотнения

Эта безразмерная величина позволяет определить, насколько фактическая плотность отличается от насыпной или максимальной:

  • при перевозке коэффициент согласовывается между заказчиком и поставщиком, отгружающим сырье из карьера, со склада или завода;
  • при устройстве основания под какое-либо сооружение Ку задается проектом как отношение к максимальной плотности грунта.

Это 2 разных сценария, соответственно, расчет ведется совершенно по-разному.

Коэффициент уплотнения транспортировки Кут

При перевозке за счет вибрации более мелкие частицы перемещаются вниз, заполняют пустоты между крупными зернами. Соответственно, объем груза уменьшается, а плотность увеличивается.

Приемка нерудных материалов, как правило, производится по объему или массе. Чтобы избежать неприятных сюрпризов при получении груза, нужно учитывать неизбежную усадку при транспортировке.

Если материалы принимаются по объему, проводится обмер поставки, то есть размер наполненной части ж/д вагона или автомобиля. Затем полученное значение умножается на коэффициент Кут.

Поведение материала во время транспортировки и складской переработки зависит от гранулометрического состава, влажности, способности слеживаться при хранении, абразивности частиц, а также вида транспорта и климатической зоны. Согласно ГОСТ 9757-90 коэффициент уплотнения песка и других нерудных материалов должен быть согласован с изготовителем, но принимается не более 1,15, т.е. потеря объема не должна быть выше 15%. Кут всегда больше единицы, поскольку рассчитывается как отношение первоначального объема материала к его к объему после перевозки.

Если приемка проводилась по массе, весовые единицы пересчитываются в насыпной объем делением на насыпную плотность по формуле:

Поставщиком отгружено 6 м³ песка в кузов грузового автомобиля. После доставки объем естественно уменьшился. При измерении установлено, что он равен 4,8 м³. Требуется определить, была ли недопоставка.

Умножаем 4,8 на Кут=1,15. Получаем V=4,8х1,15=5,52 м³. Налицо недогруз 0,8 м³.

Если приемка ведется по массе, после взвешивания автомобиль с песком масса материала объемом 6 м³ (при стандартной насыпной плотности 1600 кг/м³) должна составлять m=6х1600=9600 кг.

Читать еще:  Расход цемента на 1 м2 штукатурки калькулятор

Нормативными считаются технологические потери при перевозке железнодорожным, автомобильным или водным транспортом без перегрузок, по массе не более:

  • щебня, гравия, шлака — 1,15-1,24% ;
  • песка, ПГС, отсева, керамзита — 1,2-1,34%.

С перегрузками из одного транспорта в другой для всех материалов норма потерь — 1,50-1,54%. Если не хватает больше, поставщик допустил недогруз, что является уже поводом для предъявления претензии заказчиком.

Как рассчитать потребность в материалах с учетом коэффициента уплотнения

Для любых строительных работ необходимо как можно точнее определить расход материалов. Например, проводится устройство щебеночной подготовки толщиной 20 см на площади 100 кв.м.

Находим объем подушки:

С учетом при укладке коэффициента уплотнения щебня 0,98 и при транспортировке 1,15 находим необходимый объем материала, который должен отпустить поставщик из карьера:

Учитывая стандартный объем кузова КамАЗа 6 м³ нам нужно заказать 4 машины.

Коэффициент уплотнения грунта

При устройстве оснований и фундаментов важной характеристикой является плотность грунта. Она определяет его несущую способность, поведение под нагрузкой, склонность к просадкам.

Плотность грунта зависит от минералогического состава, пористости и влажности. Самые плотные сложены из гранитных, базальтовых или кремниевых пород. Их удельный вес свыше 3000 кг/м³. Наименьшая плотность у торфяников и насыпных грунтов — не более 700-900 кг/м³.

Коэффициент уплотнения — это безразмерная величина, равная отношению фактической плотности грунта к его максимальной плотности:

Физический смысл Ку легко понять, если представить сначала монолитную глыбу, а затем ее в уже в измельченном, но уплотненном виде. Соотношение плотностей одного и того же вещества, но в разном состоянии, и есть коэффициент уплотнения. В отличие от Кут, который всегда больше единицы, Ку не может быть больше 1, поскольку в числителе стоит фактическая плотность материала с порами, а в знаменателе — без воздушных пустот.

Максимальная плотность грунта: способ определения по ГОСТ 22733-2016

Испытания проводятся в лабораторных условиях с помощью специальной трамбующей установки. Суть их состоит в следующем:

  1. На строительной площадке отбирается грунт естественной влажности. В образце должно быть не более 25% твердых частиц крупнее 2 мм, отсутствовать промерзание и переувлажнение.
  2. В форму помещаются порции грунта, которые затем трамбуются на установке за 3 приема по 40 ударов.
  3. Измеряется вес 1 л утрамбованной массы, определяется плотность.
  4. Затем влажность увеличивается ступенями по 2%, проводится аналогичный цикл испытаний.
  5. По результатам строится график зависимости плотности от влажности. В точке перегиба фиксируется максимальное значение ρmax при оптимальной влажности.

Определение наибольшей плотности грунта позволяет понять, при каком значении ρ усадка под фундаментом будет наименьшей. В условиях стройплощадки максимальное значение плотности достигнуть вряд ли удастся. Поэтому вводится коэффициент, который помогает установить, насколько фактическая плотность основания приближена к максимально возможной.

Ку задается проектом. Он рассчитывается в зависимости от нагрузки и обычно составляет 0,96-0,98. Это означает, что при уплотнении грунта или песчаной подушки плотность будет чуть меньше максимальной с небольшим отклонением 2-4%.

Определение Ку в лабораториях или полевых условиях

Имея на руках проект с заданным коэффициентом уплотнения ПГС, песка или грунта, необходимо установить, соответствует ли фактическая плотность основания нужному значению. Для этого используются различные методики.

С помощью отбора проб

Этот способ наиболее точный, но не очень скоростной. Требуется участие лаборатории, поскольку на стройплощадках сложно организовать благоприятные условия для измерений.

Для опытов используются режущие кольца известного объема. Без нарушения структуры материала производится отбор проб и дальнейшее их взвешивание.

Отобранный в нескольких точках участка грунт упаковывается в герметичную тару и отправляется на исследование. После получения результатов взвешивания определяется зависимость плотности грунта от влажности и рассчитывается фактический коэффициент уплотнения в каждой точке отбора. После оценки степени подготовки грунта выносится решение о продолжении или прекращении работ по трамбовке грунта.

Динамическим плотномером (пенетромером)

Измерения применяются в качестве экспресс-метода, позволяющего оценить степень уплотнения основания в полевых условиях. Динамический плотномер представляет собой заостренный стальной стержень с ручкой и ударной площадкой. На нем подвижно закреплен груз определенной массы.

Плотномер устанавливается вертикально на основание. Затем груз поднимается и сбрасывается на ударную площадку. При этом стержень постепенно погружается в грунт. Количество ударов подсчитывается.

После того как наконечник полностью опустится ниже поверхности, по специальной таблице определяется коэффициент уплотнения. Если он меньше требуемого проектом, производится дополнительная трамбовка. Если Ку соответствует нужному значению, основание готово к дальнейшим работам.

Для уплотнения используются виброплиты, ручные и автоматические трамбовки. Чем ближе коэффициент Ку к единице, тем меньше в грунте пустот, соответственно выше плотность.

Электромагнитный метод

При таком способе плотность грунта на стройплощадке сравнивается с ранее установленной в лабораторных условиях. Измерения проводятся специальным прибором, инициирующий электрическое поле. Он передает электромагнитный импульс, который проходит через грунт и фиксируется датчиком, а по изменению значения определяется плотность.

Для испытаний на участке выбирается не менее 5 точек, расположенных по принципу клеверного листа. Большую погрешность дают влажность, крупные твердые включения, неоднородность почвы. Измерения проводятся относительно долго по сравнению с другими вариантами, где результат можно получить за один сеанс.

Метод штампа

При этом способе определяется динамический модуль упругости грунта, который находится в прямой зависимости от его плотности. Прибор состоит из нагрузочной плиты, тензодатчика усилий, штанги с грузом и упругим элементом, акселерометра и электронного блока.

При сбрасывании груза на площадку он, благодаря силе упругости, возвращается в исходное положение. Параметры взаимодействия считываются и обрабатываются электронным блоком. По результатам испытаний определяется модуль упругости, деформации и нагрузка. Информация представляется в графическом или численном виде на дисплее. Плотномер может архивировать и отправлять данные в ПК, что создает предпосылки для более детальной обработки и планирования строительства.

Прямой метод замещения объема

Согласно стандарту ГОСТ 28514-90 плотность грунта может измеряться с помощью пескозагрузочного аппарата или цилиндра с резиновым баллоном. Перед испытаниями в лабораторных условиях определяется плотность песка, в опытах она будет образцом для сравнения.

Для проведения испытаний на уплотненном основании выбирается лунка диаметром 100 мм. В нее из установленного сверху пескобака засыпается песок. Объем загрузки вычисляется по шкале на баке. Далее измеряется вес вынутого грунта. При известных параметрах среды (в данном случае песка) плотность грунта рассчитывается по формуле:

ρ=m*ρ/m, где ρ и m — плотность и масса песка, наполняющего лунку.

В методике с резиновым баллоном в качестве среды используется вода, которая заливается внутрь аппарата. Баллон помещается в вырытую лунку, заполняется водой. По количеству потраченной воды определяется объем грунта. Далее, измерив вес пробы, можно найти искомую плотность и коэффициент уплотнения.

Этот метод можно использовать, если количество твердых крупных частиц превышает 25%. Это щебеночные и гравийные основания, а также подушки из смесей ЩПС или ПГС.

Способы увеличения плотности грунта

Характеристики грунта зависят от его состава и влажности. Если его плотность очень низкая, налицо склонность к деформациям и просадкам. Это сильносжимаемые торф, ил, сапропели, пластичные глины и т.д. В большинстве случаев они не используются в качестве оснований для строительства. Требуется повышение их прочностных свойств, которое решается различными методами:

  • инъектированием закрепляющих растворов;
  • термической обработкой (обжигом);
  • электрохимическим способом;
  • армированием;
  • установкой шпунтовых ограждений;
  • фильтрующей пригрузкой;
  • механическими методами.

При недостаточной поверхностной плотности грунта проводится уплотнение верхнего слоя трамбовками, катками, площадочными вибраторами. Глубинное уплотнение производится с помощью устройства свай, вибрации, замачивания, направленных взрывов. При большой влажности сначала понижается уровень грунтовых вод, затем проводится предварительное обжатие.

Заключение

Коэффициент уплотнения — важный показатель, который позволяет охарактеризовать состояние материалов после различных манипуляций. При транспортировке он помогает прогнозировать уменьшение объема, а при трамбовке — изменение плотности. Показатель зависит от гранулометрического состава, пористости частиц, влажности и интенсивности механического воздействия.

Ссылка на основную публикацию
Adblock
detector