Распределенная нагрузка на балку формула

Расчет балки на действие равномерно распределенной нагрузки

Как правило под термином «балка» по умолчанию подразумевается однопролетный стержень постоянного по длине сечения, без консолей, на двух шарнирных опорах, т.е. статически определимый. Определение термина «распределенная (равномерно распределенная) нагрузка» приводится отдельно. Опять же умолчанию подразумевается, что нагрузка к балке приложена перпендикулярно нейтральной оси и действует по всей длине балки. Пример расчета такой балки мы ниже и рассмотрим.

Отмечу, что для опытного инженера-строителя расчет балки на действие равномерно распределенной нагрузки больших проблем не представляет, тем более, если значения и нагрузки и длины пролета выражены целыми однозначными цифрами. Как он это делает? Сейчас узнаем.

1. Однопролетная балка постоянного по длине сечения на двух шарнирных опорах А и В, без консолей, длиной l = 4.6 м. Балка расположена горизонтально.

2. Равномерно распределенная нагрузка q = 3.2 кН приложена перпендикулярно к нейтральной оси балки по всей длине балки.

Вот собственно и все, что следует знать на первом этапе расчета — определении максимальных напряжений в поперечном сечении балки. И да, длина балки может измеряться кроме метров в сантиметрах, миллиметрах, дюймах, футах и т.д. Нагрузка может также обозначаться другими литерами, измеряться в килограммах, грамах, тоннах пудах, фунтах и т.д. — принципиального значения это не имеет и на методику расчета никак не влияет.

Если теоретические основы расчета вас не интересуют, а вы просто хотите рассчитать свою балку, то можете воспользоваться калькулятором для данной расчетной схемы (в части определения требуемых параметров сечения этот калькулятор только для деревянных балок, со временем будет и для стальных, а может и для железобетонных).

Далее возможны 2 варианта расчета:

1. Упрощенный, по готовым формулам, которые приводятся буквально в каждом справочнике по сопромату. Для человека, занимающегося частным строительством и желающего просчитать ту или иную балку, такой расчет, самое то.

2. Классический, основанный на уравнениях равновесия системы и методе начальных параметров. Такой расчет чаще всего требуется от студентов. Но и людям, желающим узнать, откуда взялись те или иные формулы, пример такого расчета также будет полезен.

Рассмотрим эти варианты более подробно.

1. Упрощенный расчет (по готовым формулам)

Расчет производится по формулам расчетной схемы 2.1 для шарнирной балки.

1.1 Определение опорных реакций:

А = B = ql/2 = 3.2·4.6/2 = 7.36 кН (671.1)

Соответственно максимальная поперечная сила, действующая в поперечных сечениях балки будет «Q» = 7.36 кН. Действовать эта поперечная сила будет на опорах балки

1.2. Определение максимального изгибающего момента:

Максимальный изгибающий момент будет действовать посредине пролета балки и он составит:

М = ql2/8 = 3.2·4.6 2 /8 = 8,464 кНм (671.2)

1.3. Подбор сечения балки:

3.1 Для деревянной балки с расчетным сопротивлением R = 13 МПа (13000 кПа) требуемый момент сопротивления составит:

Wтр = M/R = 8.464/13000 = 0.000651077 м 3 (651.077 см 3 ) (671.3.1)

Как правило поперечные сечения деревянных балок имеют прямоугольную форму. Момент сопротивления прямоугольного сечения определяется по следующей формуле:

W = bh 2 /6 (671.3.2)

Дальше возможны различные варианты, например при высоте сечения балки h = 20 см требуемая ширина сечения составит не менее:

b = 6W/h 2 = 6·651.77/20 2 = 9.77 см (671.3.3)

По сортаменту таким требованиям удовлетворяет балка с сечением 20х10 см.

Если поперечное сечение деревянной балки имеет форму, отличную от прямоугольной или квадратной, то для определения момента сопротивления можно воспользоваться одной из следующих формул, а при особо сложной форме сечения сначала определить момент инерции, а потом уже момент сопротивления.

3.2 Для стальной балки с расчетным сопротивлением R = 245 Мпа (245000) кПа) требуемый момент сопротивления составляет:

Wтр = M/R = 8.464/245000 = 3.45·10 -5 м 3 (34.5 см 3 ) (658.3.7)

Далее требуемое сечение подбирается по одному из сортаментов.

Ну а подбор сечения ж/б балки — это отдельная большая тема.

1.4. Проверка по касательным напряжениям (для деревянной балки):

Расчетное сопротивление скалыванию вдоль волокон (для древесины второго сорта) Rск = 1.6 МПа.

Для прямоугольного сечения максимальные касательные напряжения определяются по следующей формуле:

т = 1.5″Q»/bh = 1.5·7.36/(0.1·0.2) = 552 кПа (0.552 МПа) 1.5. Определение прогиба:

Для деревянной балки сечением 20х10 см момент инерции составит:

I = Wh/2 = 666.66·20/2 = 6666.6 см 4 (0.00006666 м 4 ) (671.5.1)

Модуль упругости древесины составляет Е = 1·10 4 МПа (10 7 кПа)

f = 5Ql 4 /(384EI) = 0.02798 м (2.798 см) (671.5.2)

В данном случае прогиб составляет 1/164 от длины пролета балки.

Вот собственно и весь упрощенный расчет.

2. Классический расчет

Ну а теперь перейдем к классическому расчету. Но сразу скажу, от упрощенного он отличается только первыми двумя пунктами — определением опорных реакций и максимальных напряжений, принципы подбора сечения такие же, как и изложенные выше. Ну и добавится определение начального и конечного углов поворота, эпюры поперечных сил, изгибающих моментов, углов поворота и прогиба, куда ж без этого в классическом-то расчете.

Читать еще:  Как правильно подключить бойлер к водопроводу схема

2.1. Определение опорных реакций

Для определения опорной реакции А воспользуемся третьим уравнением статического равновесия системы (уравнением моментов относительно точки В):

ΣМВ = Al — ql 2 /2 = 0 (671.6.1)

Аl = ql 2 /2; (671.6.2)

A = ql 2 /2l = 4.6·3.2/2 = 7.36 кН (671.1)

Для определения опорной реакции В также воспользуемся третьим уравнением статического равновесия системы (уравнением моментов относительно точки А):

ΣМА = Вl — ql 2 /2 = 0 (671.6.3)

Вl = ql 2 /2; (671.6.4)

В = ql 2 /2= 4.6·3.2/2 = 7.36 кН (671.1.2)

Для проверки воспользуемся вторым уравнением статического равновесия системы:

у = ql — А — В = 0 (671.6.5)

4.6·3.2 — 7.36 — 7.36 = 0 (671.6.6)

В точке А поперечные силы условно равны нулю.

Уравнение поперечных сил будет иметь следующий вид:

«Q» = А — qx (671.6.7)

где х — расстояние от начала координат (точки А) до рассматриваемого сечения балки.

Соответственно на расстоянии 0 м от точки А поперечные силы будут равны:

«Q»А = 7.36 — 3.2·0 = 7.36 кН (671.6.8)

«Q» = А — ql + В = 7.36 — 3.2·4.6 + 7.36 = 0 (671.6.9)

Этих данных достаточно для построения эпюр поперечных сил.

2.2. Определение изгибающих моментов:

Для определения изгибающих моментов, действующих в поперечных сечениях балки, используется метод сечений, согласно которому уравнение моментов будет иметь следующий вид:

М = Ах — qx 2 /2 (671.7.1)

МА = А·0 — q0 2 /2 = 0 (671.7.2)

в середине пролета:

М = Аl/2 -q(l/2) 2 /2 = 8.464 кНм (671.2.1)

в точке В (в конце балки):

М = Al — ql 2 /2 = ql·l/2 — ql 2 /2 = 0 (671.7.3)

Примечание: эпюра изгибающих моментов — квадратная парабола. Если есть необходимость определить значение изгибающего момента для любого другого поперечного сечения, то для этого нужно воспользоваться формулой (671.7.1). Но как правило в таких простых случаях загружения в этом нет необходимости. Опять же варианты использования балок переменного сечения, когда требуется знать различные значения моментов, здесь не рассматриваются.

2.3 Определение углов поворота и прогибов поперечного сечения.

Уравнение углов поворота — результат интегрирования уравнения моментов. А как известно, при интегрировании появляется постоянная интегрирования, в данном случае начальный угол поворота ΘА, который в данном случае не равен нулю. Кроме того на значение углов поворота и прогибов влияет жесткость рассматриваемой балки, выражаемая через ЕI, т.е. чем больше жесткость балки (модуль упругости и момент инерции) тем меньше в итоге углы поворота и прогибы.

Уравнение углов поворота для нашей балки будет выглядеть так:

θx = ∫Mdx/EI = — ΘА + Ax 2 /2EI — qx 3 /6EI (671.8.1)

Уравнение прогибов — это в свою очередь результат интегрирования уравнения углов поворота на рассматриваемом участке:

fх = ∫ΘАdx = — θAx + Ax 3 /6EI- qx 4 /24EI (671.8.2)

Как видим, в данном случае постоянная интегрирования — начальный прогиб — равна нулю и это логично — на опорах прогиба быть не может (во всяком случае в теории). Это позволяет составить дополнительное уравнение прогиба для одной из опор, например для точки В уравнение прогиба будет иметь вид:

fВ = — θAl + Al 3 /6EI — ql 4 /24EI = 0 (671.8.3)

θAl = Al 3 /6EI — ql 4 /24EI (671.8.4)

θA = ql 3 /(2·6EI) — ql 4 /(l·24EI) (671.8.5)

θA = ql 3 /24EI = 12.978/EI (671.8.6)

Так как у нас симметричны и балка и нагрузка, что мы уже заметили раньше, то конечный угол поворота поперечного сечения (на опоре В) будет равен начальному углу поворота.

Проверяем правильность вычислений:

θB = — ΘА + Al 2 /2EI — ql 3 /6EI = (-12.978 + 77.8688 — 51.9125)/EI = 12.977/EI (671.8.7)

Надеюсь разница в третьем знаке после запятой в значениях начального и конечного угла поворота не будет вас сильно пугать, хотя подобные вопросы иногда возникают. Сразу скажу, тут дело только в калькуляторе — чем более точный результат вы хотите получить, тем больше знаков после запятой следует него забивать.

Так как у нас симметричные и балка и нагрузка, то нет необходимости определять точку, где прогиб максимальный. Это сечение будет посредине балки. Впрочем есть формула (671.8.3) и с помощью ее можно определить прогиб в любом рассматриваемом сечении, но нас в данном случае интересует только максимальный прогиб:

Читать еще:  Затирка швов на плитке как правильно делать

fmax = — θВ2.3 + В·2.3 3 /6EI — q2.3 4 /24EI = — 18.6561/ЕI (671.8.8)

fmax = — θА2.3 + А·2.3 3 /6EI — q2.3 4 /24EI = — 18.6561/ЕI (671.8.9)

Чтобы эпюры углов поворота и прогибов были универсальными и подходили и для деревянных и для стальных и для железобетонных и для каких угодно других балок, на эпюрах показываются не абсолютные значения, а относительные. Т.е. обе части уравнения умножаются на ЕI.

2.4. Построение эпюр поперечных сил и изгибающих моментов:

На основании полученных ранее данных строим эпюры:

Рисунок 671.1. Расчетная схема (а), замена опор на реактивные силы (б), эпюра поперечных сил (в), эпюра изгибающих моментов (г), эпюра углов поворота (д), эпюра прогибов (е).

На эпюре поперечных сил в начале координат (в точке А) откладываем вверх значение опорной реакции А, согласно направлению действия реактивной силы (опорной реакции. В точке В откладываем значение опорной реакции вниз. Соединяем полученные точки прямой.

Тут может возникнуть вопрос: а почему на опоре В мы откладываем значение вниз, когда значение опорной реакции у нас положительное? Отвечаю: дело в том, что мы не просто рисуем картинку, а вообще то строим график функции, описываемой уравнением (671.6.7) и согласно этому уравнению в сечении максимально близком к опоре В (х→l) значение этого уравнения будет:

«Q»х→l = Аl — ql = — 7.36 кН (671.9)

А в точке В, где приложена реактивная сила (опорная реакция В) на эпюре происходит скачок (как впрочем и в точке А) т.е. формально мы все-таки откладываем опорную реакцию вверх и таким образом все, как положено.

Так как у нас балка на шарнирных опорах, на которую действует только равномерно распределенная нагрузка, то значения моментов на опорах равны нулю, что мы и определили ранее. На эпюре моментов посредине пролета (на расстоянии 2.3 м от начала координат) откладываем вниз значение максимального момента. Соединяем эти точки кривой линией, как показано на рисунке. В общем-то как уже говорилось, эта кривая линия — квадратичная парабола и формально для ее построения можно определить сколь угодно много значений моментов для различных сечений. Но как правило необходимости в этом нет: никакой, даже очень придирчивый преподаватель не сможет отличить квадратичную параболу от кубической, особенно если вы большими способностями в рисовании не отличаетесь.

Примечание: откладывать значение момента можно и вверх, как это принято у конструкторов машин и механизмов, принципиального значения это не имеет. Просто у строителей принято строить эпюры моментов на растянутой стороне сечения.

На эпюре углов поворота в точке А откладываем значение начального угла поворота, в точке В — значение конечного угла поворота. Соединяем эти точки кубической параболой так, чтобы она проходила через середину пролета.

На эпюре углов поворота откладываем значение максимального прогиба на расстоянии 2.3 м от начала координат (середина пролета). Проводим параболу четвертой степени через точку А, точку максимального прогиба и точку В. Если с этим возникают проблемы, то можно вычислить значения и прогибов и углов поворота для любых других поперечных сечений балки.

Вот собственно и весь расчет.

На этом пока все.

Доступ к полной версии этой статьи и всех остальных статей на данном сайте стоит всего 30 рублей. После успешного завершения перевода откроется страница с благодарностью, адресом электронной почты и продолжением статьи. Если вы хотите задать вопрос по расчету конструкций, пожалуйста, воспользуйтесь этим адресом. Зараннее большое спасибо.)). Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий. Больше подробностей в статье «Записаться на прием к доктору»

Для терминалов номер Яндекс Кошелька 410012390761783

Номер карты Ymoney 4048 4150 0452 9638 SERGEI GUTOV

Для Украины — номер гривневой карты (Приватбанк) 5168 7422 4128 9630

Категории:
  • Расчет конструкций . Примеры расчетов
Оценка пользователей: Нет Переходов на сайт: 2808 Комментарии:

Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье «Записаться на прием к доктору» (ссылка в шапке сайта).

Читать еще:  Терраса с колоннами из кирпича

Строительные калькуляторы — ProstoBuild.ru

  • Просмотров: 31593
  • Автор: PavlovAlexey
  • Дата: 2-10-2015, 20:18

Расчет балки на изгиб

Рассчитывать балку на изгиб можно несколькими вариантами:
1. Расчет максимальной нагрузки, которую она выдержит
2. Подбор сечения этой балки
3. Расчет по максимальным допустимым напряжениям (для проверки)[/i]

Давайте рассмотрим общий принцип подбора сечения балки на двух опорах загруженной равномерно распределенной нагрузкой или сосредоточенной силой.

Для начала, вам необходимо будет найти точку (сечение), в которой будет максимальный момент. Это зависит от опирания балки или же ее заделки. Снизу приведены эпюры изгибающих моментов для схем, которые встречаются чаще всего.


Далее, при делении максимального изгибающего момента на момент сопротивления в данном сечении, мы получаем максимальное напряжение в балке и это напряжение мы должны сравнить с напряжением, которое вообще сможет выдержать наша балка из заданного материала.

Для пластичных материалов (сталь, алюминий и т.п.) максимальное напряжение будет равно пределу текучести материала , а для хрупких (чугун) – пределу прочности . Предел текучести и предел прочности мы можем найти по таблицам ниже.


Давайте рассмотрим пару примеров:

1. [i]Вы хотите проверить, выдержит ли вас двутавр №10 (сталь Ст3сп5) длиной 2 метра жестко заделанного в стену, если вы на нем повисните. Ваша масса пусть будет 90 кг.[/i]
Для начала нам необходимо выбрать расчетную схему.

На данной схеме видно, что максимальный момент будет в заделке, а поскольку наш двутавр имеет одинаковое сечение по всей длине , то и максимальное напряжение будет в заделке. Давайте найдем его:

По таблице сортамента двутавров находим момент сопротивления двутавра №10.

Он будет равен 39.7 см3. Переведем в кубические метры и получим 0.0000397 м3.

Далее по формуле находим максимальные напряжения, которые у нас возникают в балке.

После того, как мы нашли максимальное напряжение, которое возникает в балке, то мы его может сравнить с максимально допустимым напряжением равным пределу текучести стали Ст3сп5 – 245 МПа.

45.34 МПа Надеюсь, что данная статья была вам полезна, и рассчитываю на вашу благодарность 🙂

Расчёт балки на прогиб и прочность

Скачать, сохранить результат

Выберите способ сохранения

Информация

Балка занимает роль основополагающего элемента в несущей конструкции. Её функция приравнивается к стержню всей конструкции, который прочно закрепили. При строительстве какого-либо сооружения очень важно осуществить грамотный расчет балки на прогиб и исключить допущение ошибки в расчетах. Прежде всего расчет требуется для определения того, на сколько балка деформируется в процессе эксплуатации сооружения. Если при расчете показатель деформации находится в пределах нормы, то можно определить нужные показатели будущей балки (сечение, материал, размер и так далее).

Делая расчет балки на прочность, необходимо четко знать виды материала, из которого изготавливаются балки (сталь, дерево, бетон, алюминий, стекло и медь). Далее нужно обратить внимание на то, что типы нагрузок, как и их схемы также различаются. Так, например, распределенная нагрузка означает, что давление оказывается не на одну точку, а распределено по всей площади балки. Сосредоточенный тип нагрузки характеризует направленность давления на один небольшой участок (точку) балки.

Вместе с типами, существуют четыре схемы нагрузок:

  • Шарнир-Шарнир
  • Заделка-Шарнир
  • Заделка-Заделка»
  • Свободный конец

Наш онлайн калькулятор позволяет сделать расчет, комбинируя все виды балок, типы и схемы нагрузок, при этом абсолютно исключив вероятность допущения ошибки в процессе расчета. Обычно рассчитывают деревянные балки, а также металлические. В процессе вычисления показателя определяется сумма сил, воздействующих на балку, которые направлены перпендикулярно конструкции. Расчет деревянной балки на прогиб осуществляется с учетом материала, т.е. учитывают вид древесины, её гибкость и многие другие параметры, также важно учесть форму сечения балки и нагрузка какого вида оказывается на балку. Сравнивая с расчетом балки из древесины, расчет металлической балки на прогиб существенно отличается, поскольку важное внимание уделяют виду соединения: электросварка, заклепки, болты и другие виды соединений.

Все перечисленные выше нюансы позволяют понять, что расчет балки на прогиб — крайне ответственный этап в процессе стройки какого-либо объекта. От него зависит надежность, долговечность и целостность всей конструкции. Наш калькулятор позволит Вам быстро и безошибочно провести предельно точный расчет.

Какие преимущества даёт наш калькулятор?

  • экономия времени;
  • исключение допущения ошибки;
  • предельная точность в расчете;
  • приятный и понятный интерфейс;
  • дополнительный справочный материал.

Таким образом, созданный нами онлайн калькулятор является незаменимым инструментом в процессе работы специалиста, которому необходимо осуществить расчет балки или любого другого важного показателя.

Ссылка на основную публикацию
Adblock
detector