Пример расчета подпорной стены

Расчет подпорных стен

Термины и определения

Подпорное сооружение

— это сооружение или конструкция, выполняемая для восприятия горизонтального давления и удержания грунта при перепаде высотных отметок, может быть самостоятельным сооружением или служить частью объекта капитального строительства.

Виды подпорных стен

По характеру взаимодействия с грунтом подпорные сооружения разделяют на:

Массивные

удерживают грунт, сопротивляясь сдвигу и опрокиды­ванию за счет собственного веса.

Уголковые

удерживают грунт, сопротивляясь сдвигу и опрокидыванию за счет дополнительного пригруза.

Гибкие

удерживают грунт, сопротивляясь сдвигу и опрокидыванию за счет заделки и конструкций крепления.

Расчет уголковых подпорных стен

Уголковые подпорные стены проектируют для организации рельефа со сту­пенчатым перепадом отметок дневной поверхности в тех случаях, когда не могут быть устроены есте­ственные откосы. Уголковые подпорные стены, удерживающие перепад высот до 7 м, целесоо­бразно проектировать консольно, без конструкций крепления. При большей высоте перепада для сни­жения внутренних усилий в конструкции подпорного сооружения целесообразно использовать анкер­ные тяги или контрфорсы.

Предварительные размеры уголковых подпорных стен определяются следующим образом

  1. Полная ширина фундаментной плиты B≥0,5H, где H — полная высота подпорной стены.
  2. Вынос фундаментной плиты за наружную грань лицевой плиты b=(0.2-0.3)B.
  3. Толщина лицевой плиты в месте заделки δ=(0,10-0.20)H.
  4. Глубину заложения определяют как для фундаментов наружных стен зданий в соответствии с СП 22.13330.

Расчет уголковой подпорной стены на сдвиг по подошве

При необходимости увеличения силы сопротив­ления сдвигу по подошве подошву следует проектировать с выступом («зубом»), направленным вниз.

Расчет уголковой подпорной стены на общий (глубинный) сдвиг

Расчет уголковой подпорной стены на опрокидывание

Расчет основания уголковой подпорной стены по несущей способности

Расчет основания уголковой подпорной стены по деформациям

Определение расчетных усилий (изгибающих моментов, нормальных и поперечных сил) в элементах подпорных стен уголкового профиля

Далее выполняется расчет конструкции подпорного сооружения по материалу в соответствии с СП 63.13330.2018 «Бетонные и железобетонные конструкции». В ходе этих расчетов подбирается рабочее армирование, назначаются материалы, уточняются толщины элементов.

Примеры армирования подпорной стены

Узлы монолитных уголковых подпорных стен

Конструктивная безопасность и надежность монолитных железобетонных уголковых подпорных стен в значительной степени зависит от правильности расчета и конструирования узла сопряжения стены с фундаментом.

Особенность этого узла заключается в следующем:

1) внутренние усилия в этом узле, а именно – изгибающий момент, поперечная сила, продольная сила, достигают своих максимальных значений, что можно увидеть из приведенных выше эпюр;

2) технология устройства монолитных уголковых подпорных стен, как правило, предполагает, что сначала возводят фундамент, затем стену, следовательно, возникает рабочий шов бетонирования.

Таким образом, в этом узле возникает очень опасная комбинация факторов: с одной стороны там максимальная поперечная сила, а с другой – там же мы устраиваем рабочий шов бетонирования.

Далее публикуем цитаты из следующей работы:

  1. «Поскольку прочность адгезии нового бетона со старым – величина случайная и во внимание быть принята не может, бетон в шве на срез работать не в состоянии, и его несущая способность Qb тоже нулевая. В итоге, расчетная несущая способность сечения по шву при действии поперечной силы (Qu = Qb + Qsw) равна нулю».
  2. «Фактически же поперечной силе в шве (сдвигу) сопротивление есть, и оказывает его продольная арматура, работающая как нагель – на срез и на изгиб».
  3. «Существует еще один старый, но забытый конструктивный прием, применявшийся в 1920 – 1940-е годы при устройстве температурных швов в монолитных перекрытиях, а именно: выполнять шов не плоским, а ступенчатым. В нем из-за большей удаленности от шва ближайших хомутов нагельный эффект проявляется несколько слабее (хотя все равно присутствует), зато в восприятии поперечной силы участвуют выступы бетона, работающие как бетонные консоли».

Таким образом, прочность этого узла на сдвиг должна быть обеспечена или за счет нагельного эффекта, или за счет бетонных шпонок.

Российские нормативные документы в готовом виде не содержат методики расчета этого узла. Если поперечная сила воспринимается продольной арматурой – необходимо отталкиваться от методики СП 63.13330.2018 по расчету закладных деталей. Методика расчета бетонных шпонок также приведена в указанном своде правил.

Другой важный вопрос, связанный с этим узлом, заключается в анкеровке арматуры стены в фундаментной плите. Как правило, растянутый арматурный стержень анкеруют путем отгиба на 90° по дуге круга радиусом в свету не менее 10d(1 – L1/Lan) [где L1 — длина прямого участка у начала заделки]. Более подробно об это можно прочитать в «Пособии но проектированию бетонных и железобетонных конструкций из тяжелого бетона без предварительного напряжения арматуры (к СП 52-101-2003)».

Из рисунка ниже можно увидеть важнейший момент – толщина плиты в месте заделки должна быть достаточна для надежной анкеровки продольной арматуры стены. В некоторых случаях целесообразно делать фундаментную плиту переменной толщины, с увеличением в сторону заделки.

Работа узлов уголковых подпорных стен достаточно подробно показана в этом исследовании – Detailing Aspects of the Reinforcement in Reinforced Concrete Structures. Retaining wall (case study).

В частности, в этой книге показаны реальные схемы разрушения уголковой подпорной стены в зависимости от различных вариантов армирования узла «стена – фундамент».

Также в работе показано, что добавление диагонального арматурного стержня (см. рис. e) значительно повышает эффективность работы узла.

Онлайн калькулятор расчета подпорной стены

Cantilever Retaining Wall Design

Онлайн калькулятор позволяет рассчитывать уголковые подпорные стены в следующем объеме: расчет давления грунта; анализ устойчивости; подбор размеров и армирования элементов подпорной стены. В расчетах можно учесть сейсмику. К сожалению, разработка зарубежная, и расчеты выполняются не по российским нормам, поэтому результаты расчетов требуют последующего уточнения.

Читать еще:  Параметры красного кирпича обыкновенного

Программы для расчета подпорных стен

В настоящее время не существует такой программы, в которую можно было бы загнать все исходные данные, и получить в итоге рабочий проект подпорной стены. Существуют лишь программы, которые автоматизируют отдельные этапы проектирования подпорной стены. Ниже рассмотрим наиболее интересные разработки.

Модуль «Подпорная стена» в программном комплексе МОНОМАХ-САПР позволяет проектировать монолитную железобетонную уголковую подпорную стену для заданных инженерно-геологических условий строительства.

Важно понимать, что результаты конструирования лишь предварительные, и требуется последующая ручная доработка. Узел сопряжения стены и фундамента программа отдельно не просчитывает, наличие рабочего шва бетонирования также не учитывается.

Существенным недостатком программы является отсутствие поддержки действующих нормативных документов, в том числе в части железобетона. Область применения программы – прикинуть в первом приближении размеры и армирование уголковой подпорной стены.

Программный комплекс GEO5 содержит следующие основные модули для расчета подпорных стен:

— модуль «Уголковая стена»;

— модуль «Гравитационная стена»;

— модуль «Габионная стена».

Область применения программы – предварительные расчеты подпорных стен с определением размеров и армирования (в необходимых случаях).

Следует помнить, что весь комплекс расчетов, который предусмотрен нормативными документами, GEO5 не выполняет.

Пакет прикладных программ «GIPRO» содержит модуль по расчету монолитных железобетонных подпорных стен. Демо-версия программы доступна на официальном сайте и выполняет без ограничений расчет подпорных уголковых стен размером по ширине подошвы до 2.1м.

Программа позволяет по заданным критериям автоматически подобрать подпорную стену и выполнить расчет армирования. Также как и другие программы, весь комплекс необходимых расчетов программа не выполняет.

Интерфейс программы не самый современный, и не самый удобный, но расчеты выполняются достаточно точно. Программа в значительной степени поддерживает действующие нормативные документы.

Пакет прикладных программ NormCAD содержит модуль, реализующий расчеты из «Пособия к СНиП Проектирование подпорных стен и стен подвалов». Отличительная особенность NormCAD – подробно расписанное решение, строго соответствующее тому документу, в соответствии с которым оно выполнено.

Программа «Фундамент» позволяет выполнять расчеты:

  • уголковых и массивных подпорных стен на естественном основании;
  • уголковых подпорных стен на свайном основании;
  • шпунтовых стен.

Программа позволяет учитывать: наличие анкеров, наличие контрфорсов, наличие зуба.

Безусловно, программа не выполняет весь комплекс необходимых расчетов, и годится только для определения предварительных параметров подпорных стен. Кроме того, программа не поддерживает актуальные нормативные документы.

По существу, данная программа является офлайн калькулятором подпорных стен. Скачать программу можно также на этом сайте.

Программа LimitState GEO позволяет рассчитывать различные виды подпорных стен по устойчивости. Особенность программы – это уникальная технология расчета, основанная на теории предельного равновесия грунтов. Программа позволяет быстро и точно оценивать устойчивость грунтовых массивов с учетом подпорных сооружений. Также стоит отметить удобный интерфейс программы. Скачать демо версию можно на официальном сайте, она содержит существенные ограничения для ряда расчетов, но тем не менее полезна для желающих освоить расчеты подпорных стен на высоком уровне.

Ручной расчет подпорных стен

Если вы желайте ознакомиться с методиками «ручного» расчета подпорных стен, можно рекомендовать следующее учебное пособие:

Подпорная стена с контрфорсами

Контрфорсы нужны для массивных и уголковых подпорных стен при их высоте более 7 м (ориентировочно). Применение контрфорсов необходимо для снижения внутренних усилий. Кроме того, контрфорсы являются дополнительным элементом безопасности для монолитных уголковых подпорных стен. Выше было показано, что конструктивная безопасность таких стен во многом зависит от правильности исполнения узла сопряжения стены с фундаментной плитой. Наличие контрфорсов существенно повышает устойчивость к сдвигу в рабочем шве бетонирования. В необходимых случаях целесообразно использовать скрытые контрфорсы, чтобы обеспечить надежность консольной системы.

Контрфорсные подпорные стены, как правило, следует рассчитывать в пространственной 3D постановке. Альтернативой контрфорсам являются анкерными тягами.

Расчет габионных подпорных стен

Габионные подпорные стены бывают двух основных типов:

  • массивно-объемные стены — устойчивость обеспечивается за счет собственного веса подпорной стены;
  • армогрунтовые стены — устойчивость обеспечивается весом грунта, который за счет армирующих панелей объединен в единый массив.

Массивно-объемные стены в целом рассчитываются как обычные железобетонные стены гравитационного типа. Основное отличие в том, что расчет внутренней прочности производится по-другому.

Армогрунтовые габионные подпорные стены работают по достаточно сложной схеме. Как указано в ОДМ 218.2.049-2015 «армирующие панели, создавая дополнительные связи между частицами грунта, вызывают перераспределение усилий, обеспечивая тем самым передачу напряжений с перегруженных зон и вовлекая в работу недогруженные».

Расчет армогрунтовых подпорных стен требует применения специальных методов и средств, как правило, используется численное моделирование.

Расчет габионных подпорных стен выполняют с учетом их двух ключевых особенностей:

1 – гибкость объемных сетчатых каркасов;

2 – проницаемый ячеистый тип конструкций.

Далее приведем две цитаты из ОДМ 218.2.049-2015:

«Гибкость сооружений из габионных конструкций позволяет им без разрушения следовать за деформациями, вызванными неравномерными осадками и размывом основания, температурными напряжениями, что исключает необходимость устройства температурно-осадочных швов. Гибкость габионных конструкций также улучшает работу всего сооружения в условиях действия динамических воздействий, в том числе и сейсмических».

«Проницаемость сооружений из габионных конструкций для грунтовых и паводковых вод обусловливается ручной укладкой каменного материала, при которой их пористость достигает 0,25-0,40. Данная особенность позволяет исключить возникновение гидростатических нагрузок и снизить затраты на устройство обратного фильтра».

Конструкции подпорных стенок и способы возведения

Основная задача подпорной стенки — держать грунт на склоне. Но это общее назначение, существует несколько признаков, которые лежат в основе классификации видов этого сооружения.

  1. Виды подпорных стенок
  2. По назначению
  3. По материалам
  4. По виду конструкции
  5. По способу обеспечения устойчивости
  6. Общие рекомендации по строительству своими руками
  7. Строительство подпорной стенки
  8. Из монолитного железобетона
  9. Из сборного бетона
  10. Из камня и строительных блоков
  11. Из дерева
Читать еще:  Как правильно вешать москитную сетку на окно

Виды подпорных стенок

В промышленном строительстве и в сельском хозяйстве подпорную стенку рассматривают как инженерную конструкцию, в ландшафте загородного участка она выполняет и эстетическую функцию. Классификацию видов стенок проводят по нескольким критериям.

По назначению

В зависимости от назначения выделяют следующие три вида:

  • для укрепления склонов в зонах промышленной и жилой застройки, дорог и инженерных сооружений;
  • для террасирования земель сельхозназначения;
  • для декоративных целей, как элемент зонирования участка на склонах с небольшим уклоном.

Особенность частного дома с участком на склоне в том, что подпорная стенка довольно часто выполняет все функции одновременно. Поэтому материал для конструкции выбирают исходя из нагрузки, условий эксплуатации и декоративных качеств. Но в этом случае возникает некоторое противоречие.

По материалам

Как правило, высокие несущие способности и эстетический вид трудно совместить в одной конструкции. Особенно когда она служит одним из центральных элементов ландшафта. Приходится искать компромисс, и когда расчетная высота стенки получается довольно высокой, лучше сделать каскад из нескольких низких террас с опорными стенками из материала, который более точно соответствует стилю ландшафтного дизайна.

Есть следующие виды материалов:

  • Монолитный железобетон. Наиболее высокие несущие способности, при условии мощного фундамента. Долговечность конструкции оценивают в 50 и более лет. Недостатки: высокая трудоемкость, большие материальные и временные затраты на строительство, необходима декоративная отделка.
  • Сборный бетон. Немного меньше устойчивость к сдвигающим нагрузкам, но более высокая, чем у монолитных конструкций, скорость возведения. Также в большинстве случаев необходима декоративная отделка.
  • Природный камень. Долговечность определяется породой камня, из которого сложена стена, срок службы может быть более 50 лет. Требуется мощный фундамент и тщательный подбор материала по форме и размеру для кладки каждого ряда. Достоинство — высокие эстетические свойства. Недостаток — большая продолжительность работ.
  • Габионы. Средние несущие способности — подходит для сравнительно невысоких стенок. Не требуют мощного основания — за счет упругости сетки конструкция довольно хорошо переносит небольшие подвижки и проседание почвы. Структура стенки имеет хорошую водопроницаемость, поэтому дренаж не обязателен. Возможна суффозия грунта и прорастание растений. Долговечность определяется качеством сетки, и может быть не менее 50 лет. Достоинство — быстрый монтаж без применения спецтехники. Недостаток — специфический вид габиона, который не подходит многим видам исторических и этнических стилей ландшафтного дизайна.
  • Строительные блоки. Относительно невысокая прочность к боковым, сдвигающим, нагрузкам. Требуется обустройство фундамента. Не рекомендуется использование силикатного кирпича, а для стенок из керамического кирпича обязательна наплавляемая гидроизоляция со стороны грунта. Достоинство — высокая скорость монтажа.
  • Дерево. Обычно используют бревна, плахи, шпалы или брус, обработанные антисептиком. Есть примеры применения толстой обрезной доски, способной выдержать расчетную нагрузку. Достоинства: возможность использования свайного фундамента, простота монтажа, высокие декоративные свойства (при условии деревянных построек на участке). Недостатки — низкие несущие способности и невысокая долговечность.
  • Профлист. Относительно новый материал для возведения подпорных стенок. Используют для невысоких конструкций. Можно устанавливать на винтовой фундамент. Прочность и устойчивость определяется видом профиля и толщиной металла, долговечность зависит от толщины и вида защитного покрытия. Достоинство — простота монтажа и высокая скорость возведения.

По виду конструкции

Различают следующие варианты конструкции подпорных стенок:

  • По высоте: низкие — до 1 м, средние — 1-2 м, высокие — 2 м и выше.
  • По размеру подземной части: глубокого заложения (глубина подошвы фундамента более чем в полтора раза больше толщины стенки), неглубокого заложения.
  • По расположению: отдельно стоящие, связанные с другими сооружениями.

Забор — подпорная стенка в одном

По способу обеспечения устойчивости

Подпорная стенка состоит из подземной части (фундамента) и наземной части. На нее действуют такие силы:

  • собственный вес;
  • вес грунта насыпанного на выступ (консоль) основания;
  • силы сцепления основания с грунтом;
  • боковое давление грунта на стенку.

Первые три силы обеспечивают устойчивость конструкции, последняя — стремится стенку сдвинуть и опрокинуть.

По способу достижения устойчивости выделяют следующие варианты конструкции:

  • Устойчивость к сдвигу достигается за счет массы стенки.
  • Устойчивость достигается за счет массы стенки и веса грунта, лежащего на консоли фундамента.
  • Устойчивость достигается за счет надежного защемления основания в коренном грунте.
  • Устойчивость достигается за счет веса грунта, лежащего на консоли фундамента, масса стенки незначительна.

Общие рекомендации по строительству своими руками

Возведение своими руками оправдано для низких и средних по высоте конструкций. Рекомендованная высота подпорных стенок для приусадебных участков лежит в пределах 0.3-1.4 м. При соблюдении определенных условий, конструкции можно возводить без предварительного расчета:

  • Грунты должны относится к устойчивым — крупнообломочным, суглинки и глины, супеси.
  • Верхний уровень залегания грунтовых вод (верховодки) должен лежать не ближе чем 1.5 м к поверхности.
  • Глубина промерзания должна находиться не ниже 1.5 м.
  • Для стенки из бетона, камня или кирпича должен быть предусмотрен ленточный фундамент. Глубина заложения фундамента должна составлять до 50% высоты наземной части.
  • Для защиты от сил пучения должны быть проведены специальные мероприятия: устройство дренажа и песчано-гравийная засыпка толщиной 40-60 см, отсекающая капиллярный подъем влаги из почвы.
  • При кладке стенки из блоков или кирпича целесообразно профиль конструкции делать с расширением к низу. Минимальная толщина в узкой части должна составлять: 60 см — для кладки из камня, 50 см — для кладки из кирпича, 40 см — для бетонных блоков.
  • Для продления срока службы сборных стенок из камня, кирпича, блоков и дерева со стороны грунта обязателен слой наплавляемой гидроизоляции. У монолитных железобетонных конструкций поверхность обрабатывают битумными мастиками.
  • Следует учитывать, что стенки криволинейной или ломаной конфигурации способны выдерживать большие нагрузки, чем конструкции с прямыми очертаниями.

Строительство подпорной стенки

Ниже приведен общий алгоритм строительства стенок из разных материалов.

Из монолитного железобетона

Пошаговый алгоритм строительства выглядит так:

  • Роют траншею с учетом толщины стены и опалубки. Минимальная толщина монолитной стенки, при армировании двумя поясами арматуры с двумя продольными прутками, равна 15-20 см (зависит от толщины арматуры). Приблизительно столько же надо для опалубки. Глубину траншеи выбирают из расчета размера подземной части и толщины подушки из песка и гравия.
  • На дне траншеи, со стороны склона, роют углубление для дренажной трубы. Засыпают туда слой мелкого щебня. Укладывают дренажную трубу, завернутую в водопроницаемый геотекстиль. Выводят трубу в ближайший дренажный колодец или приемник ливневой канализации. Засыпают трубу щебнем.
  • Выравнивают дно траншеи, трамбуют.
  • Монтируют общую опалубку для фундамента и стенки.
  • Закладывают армопояс.
  • Заливают бетон.

После созревания бетона опалубку снимают, проводят обратную засыпку грунта в пазухи траншеи и за стенку со стороны склона.

Кроме традиционной технологии возможна заливка тонкой стены с продольным армированием одним прутком и вертикальными связями. В этом случае толщина стены может составлять 10 см, но грунт на склоне засыпают слоями, и дополнительно армируют каждый слой георешеткой (геосеткой) с загибом края.

Из сборного бетона

Технология сооружения зависит от вида бетонных блоков. Если используют фундаментные блоки, то их укладывают на подготовленное основание в виде песчано-гравийной подушки.

Блоки серии ФБС скрепляют между собой кладочным раствором, а блоки серии БПС монтируют на сухую.

Кроме фундаментных блоков есть и другие материалы, которые позволяют быстро и без «мокрых» процессов соорудить подпорную стену из сборного бетона.

Очень интересный продукт предлагают компании Geoblok и Tenax. Они разработали систему блочных подпорных стен армированных георешеткой. В ее состав входят:

  • бетонные блоки T-blok (Geoblok) для сцепления с георешеткой (первый ряд, и остальные согласно схеме армирования) — с пазом в основании и сверху;
  • бетонные блоки T-blok (Geoblok) рядовые — с пазом в основании и ребром сверху;
  • бетонные блоки T-blok (Geoblok) со сквозным отверстием — для вывода трубы системы поперечного дренажа;
  • георешетка TT SAMP (Tenax);
  • механический соединитель T-Clip (Tenax) для сцепления решетки и паза блока.

Технология изготовления подпорной стены выглядит так:

  1. Проводят выемку грунта на склоне таким образом, чтобы при обратной засыпке можно было уложить армирующую георешетку необходимой ширины приблизительно на высоте первого ряда блоков.
  2. Роют траншею под основание.
  3. Подготавливают основание. Это может быть монолитный или сборный ленточный фундамент, а для невысоких стенок — утрамбованный щебеночный слой.
  4. Укладывают на основание первый ряд блоков. У подножья этого ряда закладывают трубы продольного дренажа, которые засыпают слоем щебня.
  5. Укладывают георешетку на грунт со стороны склона. Она должна с запасом заходит за паз блоков.
  6. Фиксируют решетку к грунту анкерами, а в верхних пазах блоков первого ряда — соединителями.
  7. Рядовые блоки укладывают с перевязкой шва, используя систему «паз-ребро». Кладку ведут на высоту следующего уровня армирования георешеткой. В этом ряду укладывают блоки с пазами снизу и сверху.
  8. Насыпают слой грунта, оставляя место у стены для засыпки дренажного материала (щебня, обломочного грунта).
  9. Трамбуют грунт и дренажный слой.
  10. Закладывают георешетку, фиксируют к грунту и в пазах блоков.
  11. В таком алгоритме возводят стенку на проектную высоту.

Блоки выпускают окрашенными в массе, но, при желании, их можно облицевать любой плиткой для наружных работ — шероховатая поверхность лицевой части обеспечивает хорошую адгезию с клеевыми растворами. Как утверждает компания, система армогрунтованных блочных подпорных стен рассчитана на 120 лет эксплуатации.

Из камня и строительных блоков

Несмотря на разнообразие видов строительных блоков и размеров камня, технология строительства в каждом случае имеет схожую последовательность выполнения работ:

  1. Проводят земляные работы по выемке грунта в пятне фундамента и части склона.
  2. Закладывают один из видов ленточного фундамента (монолитный — из бетона или бутобетона, сборный — из ФБС, бутового камня, полнотелых строительных блоков).
  3. При необходимости обустраивают подземный продольный дренаж.
  4. Возводят стенку на кладочном растворе с перевязкой швов соседних рядов. При необходимости закладывают трубы поперечного дренажа, и обустраивают лотки водоотвода с внешней стороны наземной части.
  5. Проводят гидроизоляцию стенки со стороны склона.
  6. Засыпают и уплотняют грунт (возле стены — дренирующий материал).

Из дерева

Обустройство подпорной стенки из дерева чем-то напоминает забор (стену) из бревна или пиломатериалов большого сечения. Это может быть:

  • частокол, каждый элемент которого «защемлен» в грунте;
  • горизонтальные пролеты из бруса, бревна или шпал лежащих на ленточном фундаменте, с креплением к нему анкерами и соединением элементов между собой на скобы или нагели;
  • горизонтальные пролеты из толстой доски, блок-хауса или имитации бруса с опорой на столбы из бревна.

В заключение. Строительство подпорной стены из габионов ничем не отличается от других ландшафтных и укрепляющих конструкций с использованием проволочных сеток и засыпки из обломков скального грунта, крупного щебня или гальки. А подпорная стенка из профлиста проходит по такому же алгоритму, что и строительство забора (с учетом нагрузок на несущие столбы или винтовые сваи).

Ссылка на основную публикацию
Adblock
detector