Уплотнение песчаного основания

Уплотнение грунта, песка и щебня

Уплотнение строительных материалов (грунтов) производится для увеличения их прочностных характеристик и избежания осадок в процессе эксплуатации. Уплотнение происходит за счет приложения статической или вибрационной силы на уплотняемый материал. Наибольшее распространение уплотнение получило в дорожном строительстве, возведении насыпей и дамб, фундаментных и ландшафтных работах.

Качество уплотнения каменной отсыпки, грунтов и асфальтобетона напрямую связано с несущей способностью материала и его водонепроницаемостью. Причем увеличение степени уплотнения на 1% ведет к увеличению прочности материала на 10-20%.

Некачественное уплотнение ведет к последующим усадкам грунтов, что значительно увеличивает стоимость содержания или приводит к дорогостоящему ремонту.

Области применения уплотнения

Вот список областей, где уплотнение используется наиболее часто:

  • Автодорожное строительство
  • Железные дороги
  • Фундаменты зданий
  • Аэропорты и порты

Автомобильные дороги

Разнообразие современных автомобильных дорог очень большое: начиная от грунтовых проселочных дорог, заканчивая многополосными магистралями с асфальтобетонным покрытием.

Вне зависимости от типа дороги, для увеличения несущей способности полотна и увеличения срока службы необходимо использовать уплотнение всех слоев дороги, включая насыпь.

Дорога возводится двумя способами – на насыпи или в выемке. Дорожная одежда состоит из подстилающего слоя, слоя основания и финальных слоев покрытия. Основная ее задача – равномерно распределять давление от поверхностных нагрузок по всему земляному полотну.

Максимальное давление возникает на поверхности, поэтому требование к качеству материала и его уплотнению максимальны для слоев покрытия – асфальту или асфальтобетону.

Слой основания обеспечивает жесткость слоям покрытия, поэтому требования к его уплотнению также велики. Обычно для этих слоев используется щебень или каменная отсыпка.

Железные дороги

Во всем мире железные дороги обеспечивают большую часть грузового трафика. Значительная часть таких перевозок занимает транспортировка крайне тяжелых материалов, таких как руда и уголь. Поэтому способность противостоять нагрузкам критически важна для железной дороги. А этого невозможно добиться без качественного уплотнения железнодорожной насыпи.

Фундаменты зданий

Устойчивость и срок службы любых типов построек напрямую зависят от качества фундамента. Особенно это важно в местах, где отсутствуют прочные грунты.

Возведение качественной дренажной подушки под основание зданий проблематично выполнить без использования уплотнительной техники.

Крупные инфраструктурные проекты: порты и аэропорты

В современном мире грузооборот аэропортов и морских портов вырос многократно. Чтобы справится с этим потоком грузов – значительно возросла интенсивность движения судов и самолетов, а следовательно выросли нагрузки на взлетные полосы и причалы. На данных объектах требования к качеству работ и используемых материалов максимальны. Стандарты по уплотнению всех подстилающих слоев и слоев покрытия значительно выше, чем на прочих объектах.

Способы уплотнения

Существуют два способа уплотнения грунтов и асфальтных покрытий: статическое и вибрационное воздействие.

Статическое уплотнение

Статическое уплотнительное оборудование для воздействия на уплотняемый материал использует только собственный вес. Чтобы изменить силу воздействия на поверхность необходимо либо изменить массу, либо площадь контакта.

Такой тип оборудования не обеспечивает уплотнение материала на достаточную глубину, т.к. при нем возникает эффект «распора» между частицами верхнего слоя материала, что препятствует уплотнению нижележащих частиц.

К такому типу оборудования относятся статические катки с гладкими вальцами и катки на пневматических шинах.

Вибрационное уплотнение

Вибрационное уплотнительное оборудование использует комбинацию статического и динамического воздействия. Вибрация создается за счет вращения эксцентрикового груза. Вибрационные удары передается частицами материала между собой, что приводит к уменьшению трения между ними и взаимному движению. Что в свою очередь позволяет частицам переупаковываться в максимально плотное состояние. По сравнению со статическим, вибрационное уплотнение воздействует на материал на гораздо большую глубину. Изначально данный способ уплотнения использовался только для несвязных грунтов (песок, щебень и т.п.), однако со временем появилась вибрационное оборудование и для уплотнения глинистых грунтов и асфальта.

Эффективность воздействия вибрационного оборудования признана во всем мире, и на текущий момент данный способ уплотнения является доминирующим на рынке.

Влияние влажности грунта на его уплотнение

Любые грунты состоят из трех элементов: твердые частицы, воздух и вода. Во время уплотнения почти все грунты достигают максимальной плотности при определенном оптимальном содержании в них воды.

Таким образом, сухой грунт плохо поддается уплотнению, а влажный грунт становится мягким и его легче утрамбовать.

Однако, чем выше содержание воды в грунте, тем ниже его плотность. Максимальная плотность достигается при оптимальном содержании влаги в грунте, что обычно является промежуточным состоянием между абсолютно сухим и полностью влажным.

Для определения оптимальной влажности для грунта используют лабораторный анализ по ГОСТ 22733-2002 (Грунты. Метод лабораторного определения максимальной плотности).

Степень уплотнения чистого песка и щебня (без содержания примесей) почти не зависит от содержания в них влаги, и могут быть максимально утрамбованы как в сухом, так и водонасыщенном состоянии.

Уплотнение различных типов грунтов

В зависимости от используемого уплотняемого материала выбираются соответствующие способы и оборудование для уплотнения.

Песок и щебень

Как уже упоминалось ранее, песок и щебень достигают своей максимальной плотности в абсолютно сухом или полностью водонасыщенном состоянии. Но так как данные материалы обладают отличными дренирующими свойствами, достаточная плотность достижима при любом содержании влаги в материале.

Но при использовании щебня и песка с содержанием примесей, дренирующие свойства заметно ухудшаются и материал становится пластичным, что затрудняет его уплотнение. В таких случаях необходимо производить уплотнение при оптимальном содержании влаги.

При уплотнении песка и щебня с низким содержанием примесей может возникнуть небольшая проблема – материал пытается выпучиться сзади вальца катка или виброплиты, тем самым плотность верхнего слоя снижается. Но при послойном уплотнении данный нюанс не играет большого значения, т.к. нижележащий слой уплотняется при обработке верхнего слоя.

Для уплотнения песка и щебня подойдет любое вибрационное оборудование: вибротрамбовки, виброплиты и виброкатки. Вес оборудования влияет на высоту трамбуемого слоя.

Скальная порода

Отсыпка из скальной породы применяется в качестве насыпей в дорожном строительстве, при сооружении платин и дамб, а также при возведении взлетных полос и морских портов. Валуны из скальной породы могут достигать размеров до 1,5 метров и обладают значительной прочностью.

Первичная укладка скальных пород производится бульдозерами, они образуют довольно ровную поверхность. Для дальнейшего уплотнения используют вибрационные катки тяжелого и среднего класса.

Пылеватые грунты

На качество уплотнения пылеватых грунтов сильно влияет степень содержания в них влаги. Для качественного уплотнения подобного грунта, уровень влажности не должен сильно отличаться от оптимального. При большом содержании влаги в пылеватом грунте и при воздействии вибрации такой грунт становится текучим, что сильно снижает возможность его качественного уплотнения.

Читать еще:  Норма уклона канализационных труб диаметром 100 мм

Пылеватые грунты с оптимальной влажностью обладают низкой вязкостью, поэтому их можно уплотнять более толстыми слоями, чем песок. Для их уплотнения идеально подходят вибрационные катки среднего и тяжелого класса, либо тяжелые виброплиты.

Глина и суглинки

Глину и грунты, содержащие большое количество глины, часто используют в дорожном строительстве при возведении насыпей. Качество уплотнения глины меняется в зависимости от содержания в ней воды. При низком содержании влаги она становится твердой, а при высоком содержании очень пластичной. Поэтому при уплотнении подобных грунтов оптимальная влажность материала является существенным фактором.

Для уплотнения глины используют вибрационные катки с гладкими либо кулачковыми вальцами. Кулачковые – когда влажность ниже оптимальной, а гладкие вальцы – при повышенной влажности. Глубина слоя выбирается в пределах от 20 до 40 см. Толщина уплотняемого слоя влажной глины может быть больше, чем сухой.

При существенном отклонении уровня влажности от оптимального могут быть использованы бороны и фрезы для увлажнения или проветривания грунта.

Коэффициент уплотнения песка, щебня, грунта и ПГС — таблица и правила расчета

Сыпучие строительные материалы, а также грунты при различных физических воздействиях могут разрыхляться или уплотняться. При этом плотность их колеблется в достаточно большом интервале — до нескольких десятков процентов. В строительстве часто применяются 2 относительные величины — коэффициент уплотнения при транспортировке Кут и коэффициент уплотнения грунта (основания) Ку. По сути они отражают одно и то же явление — изменение объема вследствие уменьшения пористости, но рассчитываются и применяются по-разному.

Характеристики плотности строительных материалов

Если в карьере горные породы находятся в плотном монолитном состоянии, то при добыче они разрыхляются, становятся более пористыми. Сырье проходит множество манипуляций — выемку, промывку, просеивание с распределением на фракции, хранение. При отгрузке материалы опять рыхлятся, а при перевозке трамбуются. На завершающей стадии они укладываются в конструкцию и еще раз уплотняются. На протяжении всего процесса изменяется влажность, что неизбежно отражается на плотности.

Сыпучие материалы — щебень, песок, песчано-гравийная смесь ПГС и т.д. — состоят из отдельных зерен, между которыми есть пустоты. При разработке, погрузке и выгрузке твердый скелет разрыхляется, объем пор и пустот увеличивается.

Рыхлонасыпанное состояние материала характеризуется насыпной плотностью, то есть соотношением массы и объема, ей занимаемого:

Измеряется она путем взвешивания стандартного мерного сосуда объемом 5-50 дм³ без предварительного уплотнения. Размер тары выбирается исходя из наибольшей крупности частиц. В процессе испытаний сразу можно найти пустотность как отношение объема пустот ко всему объему материала. Она определяется в %. Так, насыпная плотность песка составляет 1600 кг/м³, щебня 1310-1400 кг/м³, ПГС — 1340-1500 кг/м³ (в зависимости от размера фракций). В рыхлом состоянии между частицами сохраняется некоторый объем воздуха. Пустотность песка, щебня и ПГС соответственно 30-45%, 20-50% и 30-50%.

Если убрать все поры из материала, то получится сплошной монолит. Его плотность называется истинной. Она намного больше насыпной: у песка это 2500-3000 кг/м³, щебня — 2700-3100 кг/м³, ПГС 2500-3100 кг/м³. Это величина неизменная, она необходима для вычисления пористости материала.

Истинная плотность определяется опытным путем. Сырье измельчается в порошок, затем находится его масса и объем (по объему вытесненной из сосуда воды). По формуле ρ=m/V рассчитывается удельный вес материала без пор и пустот.

Для чего используется коэффициент уплотнения

Эта безразмерная величина позволяет определить, насколько фактическая плотность отличается от насыпной или максимальной:

  • при перевозке коэффициент согласовывается между заказчиком и поставщиком, отгружающим сырье из карьера, со склада или завода;
  • при устройстве основания под какое-либо сооружение Ку задается проектом как отношение к максимальной плотности грунта.

Это 2 разных сценария, соответственно, расчет ведется совершенно по-разному.

Коэффициент уплотнения транспортировки Кут

При перевозке за счет вибрации более мелкие частицы перемещаются вниз, заполняют пустоты между крупными зернами. Соответственно, объем груза уменьшается, а плотность увеличивается.

Приемка нерудных материалов, как правило, производится по объему или массе. Чтобы избежать неприятных сюрпризов при получении груза, нужно учитывать неизбежную усадку при транспортировке.

Если материалы принимаются по объему, проводится обмер поставки, то есть размер наполненной части ж/д вагона или автомобиля. Затем полученное значение умножается на коэффициент Кут.

Поведение материала во время транспортировки и складской переработки зависит от гранулометрического состава, влажности, способности слеживаться при хранении, абразивности частиц, а также вида транспорта и климатической зоны. Согласно ГОСТ 9757-90 коэффициент уплотнения песка и других нерудных материалов должен быть согласован с изготовителем, но принимается не более 1,15, т.е. потеря объема не должна быть выше 15%. Кут всегда больше единицы, поскольку рассчитывается как отношение первоначального объема материала к его к объему после перевозки.

Если приемка проводилась по массе, весовые единицы пересчитываются в насыпной объем делением на насыпную плотность по формуле:

Поставщиком отгружено 6 м³ песка в кузов грузового автомобиля. После доставки объем естественно уменьшился. При измерении установлено, что он равен 4,8 м³. Требуется определить, была ли недопоставка.

Умножаем 4,8 на Кут=1,15. Получаем V=4,8х1,15=5,52 м³. Налицо недогруз 0,8 м³.

Если приемка ведется по массе, после взвешивания автомобиль с песком масса материала объемом 6 м³ (при стандартной насыпной плотности 1600 кг/м³) должна составлять m=6х1600=9600 кг.

Нормативными считаются технологические потери при перевозке железнодорожным, автомобильным или водным транспортом без перегрузок, по массе не более:

  • щебня, гравия, шлака — 1,15-1,24% ;
  • песка, ПГС, отсева, керамзита — 1,2-1,34%.

С перегрузками из одного транспорта в другой для всех материалов норма потерь — 1,50-1,54%. Если не хватает больше, поставщик допустил недогруз, что является уже поводом для предъявления претензии заказчиком.

Как рассчитать потребность в материалах с учетом коэффициента уплотнения

Для любых строительных работ необходимо как можно точнее определить расход материалов. Например, проводится устройство щебеночной подготовки толщиной 20 см на площади 100 кв.м.

Находим объем подушки:

С учетом при укладке коэффициента уплотнения щебня 0,98 и при транспортировке 1,15 находим необходимый объем материала, который должен отпустить поставщик из карьера:

Учитывая стандартный объем кузова КамАЗа 6 м³ нам нужно заказать 4 машины.

Коэффициент уплотнения грунта

При устройстве оснований и фундаментов важной характеристикой является плотность грунта. Она определяет его несущую способность, поведение под нагрузкой, склонность к просадкам.

Плотность грунта зависит от минералогического состава, пористости и влажности. Самые плотные сложены из гранитных, базальтовых или кремниевых пород. Их удельный вес свыше 3000 кг/м³. Наименьшая плотность у торфяников и насыпных грунтов — не более 700-900 кг/м³.

Читать еще:  Утепление потолка снаружи

Коэффициент уплотнения — это безразмерная величина, равная отношению фактической плотности грунта к его максимальной плотности:

Физический смысл Ку легко понять, если представить сначала монолитную глыбу, а затем ее в уже в измельченном, но уплотненном виде. Соотношение плотностей одного и того же вещества, но в разном состоянии, и есть коэффициент уплотнения. В отличие от Кут, который всегда больше единицы, Ку не может быть больше 1, поскольку в числителе стоит фактическая плотность материала с порами, а в знаменателе — без воздушных пустот.

Максимальная плотность грунта: способ определения по ГОСТ 22733-2016

Испытания проводятся в лабораторных условиях с помощью специальной трамбующей установки. Суть их состоит в следующем:

  1. На строительной площадке отбирается грунт естественной влажности. В образце должно быть не более 25% твердых частиц крупнее 2 мм, отсутствовать промерзание и переувлажнение.
  2. В форму помещаются порции грунта, которые затем трамбуются на установке за 3 приема по 40 ударов.
  3. Измеряется вес 1 л утрамбованной массы, определяется плотность.
  4. Затем влажность увеличивается ступенями по 2%, проводится аналогичный цикл испытаний.
  5. По результатам строится график зависимости плотности от влажности. В точке перегиба фиксируется максимальное значение ρmax при оптимальной влажности.

Определение наибольшей плотности грунта позволяет понять, при каком значении ρ усадка под фундаментом будет наименьшей. В условиях стройплощадки максимальное значение плотности достигнуть вряд ли удастся. Поэтому вводится коэффициент, который помогает установить, насколько фактическая плотность основания приближена к максимально возможной.

Ку задается проектом. Он рассчитывается в зависимости от нагрузки и обычно составляет 0,96-0,98. Это означает, что при уплотнении грунта или песчаной подушки плотность будет чуть меньше максимальной с небольшим отклонением 2-4%.

Определение Ку в лабораториях или полевых условиях

Имея на руках проект с заданным коэффициентом уплотнения ПГС, песка или грунта, необходимо установить, соответствует ли фактическая плотность основания нужному значению. Для этого используются различные методики.

С помощью отбора проб

Этот способ наиболее точный, но не очень скоростной. Требуется участие лаборатории, поскольку на стройплощадках сложно организовать благоприятные условия для измерений.

Для опытов используются режущие кольца известного объема. Без нарушения структуры материала производится отбор проб и дальнейшее их взвешивание.

Отобранный в нескольких точках участка грунт упаковывается в герметичную тару и отправляется на исследование. После получения результатов взвешивания определяется зависимость плотности грунта от влажности и рассчитывается фактический коэффициент уплотнения в каждой точке отбора. После оценки степени подготовки грунта выносится решение о продолжении или прекращении работ по трамбовке грунта.

Динамическим плотномером (пенетромером)

Измерения применяются в качестве экспресс-метода, позволяющего оценить степень уплотнения основания в полевых условиях. Динамический плотномер представляет собой заостренный стальной стержень с ручкой и ударной площадкой. На нем подвижно закреплен груз определенной массы.

Плотномер устанавливается вертикально на основание. Затем груз поднимается и сбрасывается на ударную площадку. При этом стержень постепенно погружается в грунт. Количество ударов подсчитывается.

После того как наконечник полностью опустится ниже поверхности, по специальной таблице определяется коэффициент уплотнения. Если он меньше требуемого проектом, производится дополнительная трамбовка. Если Ку соответствует нужному значению, основание готово к дальнейшим работам.

Для уплотнения используются виброплиты, ручные и автоматические трамбовки. Чем ближе коэффициент Ку к единице, тем меньше в грунте пустот, соответственно выше плотность.

Электромагнитный метод

При таком способе плотность грунта на стройплощадке сравнивается с ранее установленной в лабораторных условиях. Измерения проводятся специальным прибором, инициирующий электрическое поле. Он передает электромагнитный импульс, который проходит через грунт и фиксируется датчиком, а по изменению значения определяется плотность.

Для испытаний на участке выбирается не менее 5 точек, расположенных по принципу клеверного листа. Большую погрешность дают влажность, крупные твердые включения, неоднородность почвы. Измерения проводятся относительно долго по сравнению с другими вариантами, где результат можно получить за один сеанс.

Метод штампа

При этом способе определяется динамический модуль упругости грунта, который находится в прямой зависимости от его плотности. Прибор состоит из нагрузочной плиты, тензодатчика усилий, штанги с грузом и упругим элементом, акселерометра и электронного блока.

При сбрасывании груза на площадку он, благодаря силе упругости, возвращается в исходное положение. Параметры взаимодействия считываются и обрабатываются электронным блоком. По результатам испытаний определяется модуль упругости, деформации и нагрузка. Информация представляется в графическом или численном виде на дисплее. Плотномер может архивировать и отправлять данные в ПК, что создает предпосылки для более детальной обработки и планирования строительства.

Прямой метод замещения объема

Согласно стандарту ГОСТ 28514-90 плотность грунта может измеряться с помощью пескозагрузочного аппарата или цилиндра с резиновым баллоном. Перед испытаниями в лабораторных условиях определяется плотность песка, в опытах она будет образцом для сравнения.

Для проведения испытаний на уплотненном основании выбирается лунка диаметром 100 мм. В нее из установленного сверху пескобака засыпается песок. Объем загрузки вычисляется по шкале на баке. Далее измеряется вес вынутого грунта. При известных параметрах среды (в данном случае песка) плотность грунта рассчитывается по формуле:

ρ=m*ρ/m, где ρ и m — плотность и масса песка, наполняющего лунку.

В методике с резиновым баллоном в качестве среды используется вода, которая заливается внутрь аппарата. Баллон помещается в вырытую лунку, заполняется водой. По количеству потраченной воды определяется объем грунта. Далее, измерив вес пробы, можно найти искомую плотность и коэффициент уплотнения.

Этот метод можно использовать, если количество твердых крупных частиц превышает 25%. Это щебеночные и гравийные основания, а также подушки из смесей ЩПС или ПГС.

Способы увеличения плотности грунта

Характеристики грунта зависят от его состава и влажности. Если его плотность очень низкая, налицо склонность к деформациям и просадкам. Это сильносжимаемые торф, ил, сапропели, пластичные глины и т.д. В большинстве случаев они не используются в качестве оснований для строительства. Требуется повышение их прочностных свойств, которое решается различными методами:

  • инъектированием закрепляющих растворов;
  • термической обработкой (обжигом);
  • электрохимическим способом;
  • армированием;
  • установкой шпунтовых ограждений;
  • фильтрующей пригрузкой;
  • механическими методами.

При недостаточной поверхностной плотности грунта проводится уплотнение верхнего слоя трамбовками, катками, площадочными вибраторами. Глубинное уплотнение производится с помощью устройства свай, вибрации, замачивания, направленных взрывов. При большой влажности сначала понижается уровень грунтовых вод, затем проводится предварительное обжатие.

Заключение

Коэффициент уплотнения — важный показатель, который позволяет охарактеризовать состояние материалов после различных манипуляций. При транспортировке он помогает прогнозировать уменьшение объема, а при трамбовке — изменение плотности. Показатель зависит от гранулометрического состава, пористости частиц, влажности и интенсивности механического воздействия.

Читать еще:  Как класть плитку на гидроизоляцию в ванной

8 ошибок при уплотнении грунта

Может показаться, что уплотнение грунта – локальная и неважная тема, на самом деле значительный пласт ошибок при строительстве дома проистекает из ошибок при возведении фундамента, а качество фундамента напрямую зависит от качества уплотнения грунта. Рассмотрим, какие ошибки допускают при проведении этих работ.

Зачем уплотнять грунт?

Чтобы осознать масштаб проблемы, нужно понять значение процедуры уплотнения грунта. Так как грунт не относится к строительным материалам, то мы невольно перестаем учитывать его в процессе строительства. Грунт подвержен осадке, усадке, просадке, набуханию и другим процессам, которые могут вызвать деформацию основания и нанести вред всему дому.

  • Осадка – это процесс уплотнения грунта под весом постройки. Основная задача уплотнения – сделать осадку равномерной, чтобы она проходила в рамках проектных значений.
  • Просадка – это другой вид уплотнения, когда почва теряет свой объем из-за размачивания или перегнивания органики.
  • Усадка происходит в результате температурных воздействий.
  • Набухание – увеличение объема грунта из-за насыщения почвы грунтовыми водами.

На все эти процессы в равной степени влияет правильное уплотнение.

Местный грунт не уплотняют

Эту ошибку допускают, когда под фундамент или в обратной засыпке используют не привозной песок, а грунт, который был извлечен при рытье котлована или траншеи. Часто люди полагают, что родной грунт и так уплотнен, поэтому считают, что если походить по нему или несколько раз проехаться на тракторе, то он достигнет необходимой плотности. На самом деле такое представление является строительным мифом.

Когда подготавливается котлован или траншея из нее изымается часть грунта, нарушая целостность почвы. За многолетнюю историю земли грунт на нашем участке уплотнился, но при копке он разуплотняется. Если родной грунт возвращают в обратную засыпку или в качестве подушки под фундамент, то его плотность оказывается ниже, чем у почвы вокруг.

Дополняет негативную картину коэффициент фильтрации, который отображает скорость прохождения влаги через почву. Вода стремится проникнуть в зону с наименьшим коэффициентом фильтрации, поэтому мы получаем под отмосткой или домом прослойку из просадочного грунта.

Коэффициент фильтрации у разных типов грунта

Не используются специализированное оборудование

Недостаточно просто походить по земле, чтобы почва уплотнилась. Тут требуется использовать специализированные инструменты или технику.

  • Ручная трамбовка может быть изготовлена своими силами. Для этих целей подойдет тяжелое бревно, брус или стальная трубы с плоским квадратным основанием. Ручной трамбовкой нужно совершать удары по земле под прямым углом. Скорость работы с таким инструментом низкая, поэтому ручную трамбовку используют на небольших площадях. Например, для уплотнения почвы под укладку тротуарной плитки на участке.

  • Виброплита (виброплощадка) – имеет массивную подошву, которая передает вибрации на грунт. Обычно эту технику берут в аренду на время строительства. Плиты различаются в зависимости от веса. Чем больше вес, тем больше уплотняемый слой. В частном строительстве достаточно плиты от 75 до 90 кг, она позволяет уплотнять слои толщиной до 25 см. Площадь основания варьируется от 1600 до 6000 см.кв.

  • Вибронога (вибротрамбовка) имеет меньшую прочность и работает по другому принципу. Оборудования совершает своеобразные «прыжки», уплотняя грунт. При этом площадь воздействия у виброноги меньше (1000 см.кв.), а глубина уплотнения выше (от 40 см при весе 60 – 70 кг).

  • Каток используют в дорожном строительстве, в частном строительстве тяжелая техника практически не применяется.

Так как подобную технику берут в аренду, то нужно правильно ее назвать, это иногда бывает сложно из-за большого количества названий. Например, виброплощадкой обычно называют плиту, а вибротрамбовкой – ногу, еще строители иногда называют ногу шлеп-ногой. Нога применима для узких траншей, плита – для уплотнения подушки под фундамент.

Уплотнение одним слоем

В этом случае весь объем песка сразу засыпают в пазухи фундамента или в котлован, а потом пытаются выровнять. Из описания вибротехники становится понятно, что она способна уплотнять только слои грунта определенной толщины. Если говорить о ручном уплотнении, то слой грунта должен быть еще тоньше. Оптимальными величинами для механизированной обработки считаются слои 15 – 20 см.

Если уплотнять слой грунта толщиной в 40 см, то вибрации не пройдут весь слой целиком. В результате фундамент дома будет располагаться на рыхлой подушке.

Сухой грунт

Сухой грунт сложно уплотнить, поэтому перед началом работ его следует увлажнить. Для каждого типа грунта есть своя оптимальная влажность для уплотнения.

  • Глина – 16 – 26%
  • Суглинок – 9 – 15%
  • Супесь – 9 – 15%
  • Песок – 8 – 14%

Щебень и крошку невозможно уплотнить

Это утверждение является мифом, из-за которого щебень и крошку не уплотняют совсем. Для этих материалов уплотнение тоже является необходимым. При уплотнении между частями засыпки становится меньше воздуха. Если говорить о газобетонной крошке, то в ней частицы острыми краями цепляются друг за друга. В результате этого получается плотное основание.

Исключением является керамзит, он действительно плохо уплотняется из-за округлой формы гранул, но при этом его редко используют в качестве основания под ответственные конструкции.

Места выхода коммуникаций не уплотняют

Коммуникации могут заходить в дом через стенки фундамента, тогда они находятся в зоне уплотнения обратной засыпки. Также с уплотнением грунта над коммуникациями можно столкнуться при устройстве полов по грунту. В этих местах использование виброплиты затруднительно, потому что всегда есть опасность повредить трубу. Часто из-за этого в этих местах решают не уплотнять грунт. Правильнее все же провести уплотнение, для этого можно воспользоваться ручной трамбовкой.

Уплотненный грунт должен быть не только над коммуникациями, но и под ними. Подробнее про ошибки, связанные с прокладкой коммуникаций через фундамент читайте в статье (ссылка).

Послойный контроль

Уплотнение можно условно отнести к скрытым работам, которые нельзя будет проверить на дальнейших этапах строительства, поэтому важно проверять качество уплотнения. Проверку можно провести своими силами, для этого потребуется небольшой пруток арматуры. Если он входит в землю без усилия, то значит грунт уплотнен недостаточно. Особое внимание следует уделить зонам в углах задания и узким местам.

Углы без уплотнения

Эта ошибка встречается часто, когда делают подушку под полы по грунту после заливки фундамента. Если работы ведутся с использованием виброплиты, то она по габаритам может не проходить в углы. В этом случае на помощь опять приходит ручная трамбовка.

Качественное уплотнение грунта является необходимым условием для отсутствия проблем с фундаментом в дальнейшем

Ссылка на основную публикацию
Adblock
detector